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4. Process Modeling 
4.1. Introduction to Process Modeling 
4.1.4. What are some of the different statistical methods for model building? 

4.1.4.4. LOESS (aka LOWESS)

Useful When LOESS is one of many "modern" modeling methods that
build on "classical" methods, such as linear and nonlinear
least squares regression. Modern regression methods are
designed to address situations in which the classical
procedures do not perform well or cannot be effectively
applied without undue labor. LOESS combines much of the
simplicity of linear least squares regression with the
flexibility of nonlinear regression. It does this by fitting
simple models to localized subsets of the data to build up a
function that describes the deterministic part of the
variation in the data, point by point. In fact, one of the chief
attractions of this method is that the data analyst is not
required to specify a global function of any form to fit a
model to the data, only to fit segments of the data.

The trade-off for these features is increased computation.
Because it is so computationally intensive, LOESS would
have been practically impossible to use in the era when
least squares regression was being developed. Most other
modern methods for process modeling are similar to
LOESS in this respect. These methods have been
consciously designed to use our current computational
ability to the fullest possible advantage to achieve goals not
easily achieved by traditional approaches.

Definition of a
LOESS Model

LOESS, originally proposed by Cleveland (1979) and
further developed by Cleveland and Devlin (1988),
specifically denotes a method that is (somewhat) more
descriptively known as locally weighted polynomial
regression. At each point in the data set a low-degree
polynomial is fit to a subset of the data, with explanatory
variable values near the point whose response is being
estimated. The polynomial is fit using weighted least
squares, giving more weight to points near the point whose
response is being estimated and less weight to points
further away. The value of the regression function for the
point is then obtained by evaluating the local polynomial
using the explanatory variable values for that data point.
The LOESS fit is complete after regression function values
have been computed for each of the  data points. Many of
the details of this method, such as the degree of the
polynomial model and the weights, are flexible. The range
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of choices for each part of the method and typical defaults
are briefly discussed next.

Localized
Subsets of
Data

The subsets of data used for each weighted least squares fit
in LOESS are determined by a nearest neighbors algorithm.
A user-specified input to the procedure called the
"bandwidth" or "smoothing parameter" determines how
much of the data is used to fit each local polynomial. The
smoothing parameter, , is a number between  and

, with  denoting the degree of the local polynomial. The
value of  is the proportion of data used in each fit. The
subset of data used in each weighted least squares fit is
comprised of the  (rounded to the next largest integer)
points whose explanatory variables values are closest to the
point at which the response is being estimated.

 is called the smoothing parameter because it controls the
flexibility of the LOESS regression function. Large values
of  produce the smoothest functions that wiggle the least
in response to fluctuations in the data. The smaller  is, the
closer the regression function will conform to the data.
Using too small a value of the smoothing parameter is not
desirable, however, since the regression function will
eventually start to capture the random error in the data.
Useful values of the smoothing parameter typically lie in
the range 0.25 to 0.5 for most LOESS applications.

Degree of
Local
Polynomials

The local polynomials fit to each subset of the data are
almost always of first or second degree; that is, either
locally linear (in the straight line sense) or locally
quadratic. Using a zero degree polynomial turns LOESS
into a weighted moving average. Such a simple local model
might work well for some situations, but may not always
approximate the underlying function well enough. Higher-
degree polynomials would work in theory, but yield models
that are not really in the spirit of LOESS. LOESS is based
on the ideas that any function can be well approximated in
a small neighborhood by a low-order polynomial and that
simple models can be fit to data easily. High-degree
polynomials would tend to overfit the data in each subset
and are numerically unstable, making accurate
computations difficult.

Weight
Function

As mentioned above, the weight function gives the most
weight to the data points nearest the point of estimation and
the least weight to the data points that are furthest away.
The use of the weights is based on the idea that points near
each other in the explanatory variable space are more likely
to be related to each other in a simple way than points that
are further apart. Following this logic, points that are likely
to follow the local model best influence the local model
parameter estimates the most. Points that are less likely to
actually conform to the local model have less influence on
the local model parameter estimates.
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The traditional weight function used for LOESS is the tri-
cube weight function,

However, any other weight function that satisfies the
properties listed in Cleveland (1979) could also be used.
The weight for a specific point in any localized subset of
data is obtained by evaluating the weight function at the
distance between that point and the point of estimation,
after scaling the distance so that the maximum absolute
distance over all of the points in the subset of data is
exactly one.

Examples A simple computational example is given here to further
illustrate exactly how LOESS works. A more realistic
example, showing a LOESS model used for thermocouple
calibration, can be found in Section 4.1.3.2

Advantages of
LOESS

As discussed above, the biggest advantage LOESS has over
many other methods is the fact that it does not require the
specification of a function to fit a model to all of the data in
the sample. Instead the analyst only has to provide a
smoothing parameter value and the degree of the local
polynomial. In addition, LOESS is very flexible, making it
ideal for modeling complex processes for which no
theoretical models exist. These two advantages, combined
with the simplicity of the method, make LOESS one of the
most attractive of the modern regression methods for
applications that fit the general framework of least squares
regression but which have a complex deterministic
structure.

Although it is less obvious than for some of the other
methods related to linear least squares regression, LOESS
also accrues most of the benefits typically shared by those
procedures. The most important of those is the theory for
computing uncertainties for prediction and calibration.
Many other tests and procedures used for validation of least
squares models can also be extended to LOESS models.

Disadvantages
of LOESS

Although LOESS does share many of the best features of
other least squares methods, efficient use of data is one
advantage that LOESS doesn't share. LOESS requires fairly
large, densely sampled data sets in order to produce good
models. This is not really surprising, however, since
LOESS needs good empirical information on the local
structure of the process in order perform the local fitting. In
fact, given the results it provides, LOESS could arguably
be more efficient overall than other methods like nonlinear
least squares. It may simply frontload the costs of an
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experiment in data collection but then reduce analysis
costs.

Another disadvantage of LOESS is the fact that it does not
produce a regression function that is easily represented by a
mathematical formula. This can make it difficult to transfer
the results of an analysis to other people. In order to
transfer the regression function to another person, they
would need the data set and software for LOESS
calculations. In nonlinear regression, on the other hand, it is
only necessary to write down a functional form in order to
provide estimates of the unknown parameters and the
estimated uncertainty. Depending on the application, this
could be either a major or a minor drawback to using
LOESS.

Finally, as discussed above, LOESS is a computational
intensive method. This is not usually a problem in our
current computing environment, however, unless the data
sets being used are very large. LOESS is also prone to the
effects of outliers in the data set, like other least squares
methods. There is an iterative, robust version of LOESS
[Cleveland (1979)] that can be used to reduce LOESS'
sensitivity to outliers, but extreme outliers can still
overcome even the robust method.
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