

Announcements

* CS289 Course Staff

- *
- Radhika Nagpal (MD 235, rad@eecs) Website: main repository of all information on the class * https://canvas.harvard.edu/courses/60467
- * Limited Enrollment Process * Please fill out

 - Gogle Enrollment Form on the website by Tonight, and
 Add the class to your crimson cart.
 I will get back to you tomorrow (Thurs) about the final enrollment decisions and wait lists. And I will approve crimson carts on Friday.
- * Next Class Friday: First Assignment due (Reading + Review) There is a paper reading due friday. You will email me by 7am Friday morning, as explained on the website.

Bio-inspired Collective Systems

- * Collective Intelligence in Nature
 - * Complex goals can be achieved by collectives of relatively simple and limited individuals
 - * Parallelism, robustness, adaptability
- * Emerging Novel Distributed Systems
 - * Massive numbers, small scales, embedded
 - * Challenge: how do we construct robust and predictable systems?

Emerging Distributed Systems

Bio-inspired Collective Systems

- * Collective Intelligence in Nature
 - Complex goals can be achieved by collectives of relatively simple and limited individuals

 - Parallelism, robustness, adaptability
- Emerging novel distributed systems
 - * Massive numbers, small scales, embedded
 - * Challenge: how do we construct robust and predictable systems?
- * Collective "Artificial" Intelligence
 - Extract robust and scalable engineering techniques from our understanding of biological collectives.

What This Course is About

Grad-level Research Area Course

- Survey Bio-inspired Approaches and Applications
 - Three main topic areas:
 - * Swarm Intelligence ("social animals" as a metaphor)
- * Cellular Automata & Self-Assembly ("cell" as a metaphor)
- * Evolutionary Computing ("evolution" as a metaphor) Also, Human Collectives (as student presentations)
- Read papers (primary sources)
 - Read papers on models of natural distributed systems
 - Read papers on applications to systems design
 - Discuss and Present
- * Conduct Research (final project)
- Extend an existing paper's results, apply biological principle to a distributed systems problem, solve computational/theory problem related to collective intelligence, or model a biological system

How This Class Works

- Reading and Class Participation
- Paper Reviews
- Lecture Presentation
- Class Project

How This Class Works

- Reading and Class Participation
- Paper Reviews
- Lecture Presentation
- Class Project

* Paper Reviews

- * Due by 7am before class day
- * Post to cs289 discussion board (email for now)
- * Format: See guidelines on the website
- * Paper review due before next class: send via email to rad@eecs.harvard.edu

How This Class Works

- Reading and Class Participation
- Paper Reviews
- Lecture Presentation
- Class Project

* Presenter Days

- * Some classes are "presenter days"
- * Everyone does one presenter paper (in pairs).
- The goal is for the presenter (you) to look into the subject in more depth and educate the class on an additional interesting topic.
- * This year presenter days focus on human collectives

How This Class Works

- Reading and Class Participation
- Paper Reviews
- Lecture Presentation
- Class Projection
- * Final Research Project (in pairs)
 - * Goal is to explore a topic of your interest in more depth
 - * Project: Theory, bio-inspired distributed systems
 - application, models of biology, even robotics
 - * Key: Choosing the Scope of the problem (1 month)
 - * Deliverables: Presentation + Paper
 - * READ FINAL PROJECT GUIDELINES and examples online

How This Class Works

- Reading and Class Participation
- Paper Reviews
- Lecture Presentation
- Class Project
- * Grades are roughly
 - * 1/2 InClass Participation, Reviews, Presenter Day
 - * 1/2 Final Project

Schedule: See Online

Roughly

*Final project scope: 1 month (no readings and reviews) Final Project Dates (tentative)

Oct 16 (tentative) Discussion & teams formation.

Nov 1 Proposal due Nov 20 and 22 Presentations Dec 9

Final papers due by 5pm

Swarm Intelligence Inspire New Systems Design

- Optimization algorithms
- Networks (e.g. Routing, Synchronization)
 Swarm Robotics! (movie1 movie2)

Swarm Intelligence * Models of social insects and animal coordination * Primitives: Search, Transport, Sync, Flocking, Construction * Principles: e.g. Stigmergy & Distributed consensus * Reading: biology and applied math papers * Algorithms and Applications * Many "generic" algorithms that have wide application

- * Reading: Applications to Optimization, Networks, Robotics
- * Open Question: Analysis and Synthesis

Cellular Computing

- Models from Multi-cellular Biology
 - Local: Gradients, Directed growth, Stochastic rules
 Global: Cellular Automata; Self-assembly; Regeneration
- * Algorithms and Applications
 - * Global-to-local Compilers and Theory
 - * Algorithmic approaches to self assembly and self-repair
 - * Robotics and Programmable Materials
- * Open Question: Scalability and Hardware

Three Topics Areas

- * Swarm Intelligence
- * Cellular Computing
- * Evolutionary Computing

Evolution as a metaphor

The World == Complex goals & Dynamic environments An Amazing Variety of "Solutions"

- * Evolution as Population + Variation + Selection
- * Evolution as optimization/learning
- * Evolution as a design process...

Evolution-inspired Computing

Evolution as optimization using a population of agents
Different algorithmic flavors (e.g. genetic programming)

* Applications

- * General Algorithms: Optimization and Search problems
 - * Evolutionary Design and Programming "Invention"
 - * Evolutionary Robotics and Robot Collectives

* Open Question: Applying evolution to collectives

