

Distributed Consensus

Average Consensus

- The Average Height Problem
- The Equal Candy Problem

Distributed Consensus in "Real" Distributed Systems

- Estimation in distributed sensors (avg, median, product)
- Load-balancing in computer networks
- Natural Phenomena (diffusion, quorum-sensing)
- Synchronization (heartbeat, distributed antennas, wireless)
- Flocking and formation control (fish and birds, UAVs)
- Environmentally-adaptive robotic systems

Outline

• Part I

- We will look at the distributed consensus problem from the readings, and go through the mathematical analysis.
- Part II
 - I will show how ideas from distributed consensus have been used recently to show analytically why/how synchronization and flocking work

Problem:

- Given a Graph G= (V,E) undirected, connected
- Each node i in V has some initial value xi(0)
- Each node i has some neighbors nbrs(i)
- Nodes must cooperate to compute the average of initial values.

How do we prove this?

Proving the algorithm works		
	$X(t+1) = X(t) + \alpha \Delta X$ where $\Delta X = -L X(t)$	
Prove Correctr	ness:	
 When it stops It always stop 	s, the answer must be the average s, from any initial condition	
• If G is undirect	ed and connected	
1. Consensus is	a unique fixed point	
 Stops when 	n - L X(t) = 0	
 As we saw 	earlier, v1 = 0, e1 = [a a a a a] (and v2 > 0)	
2. The Consensu	is the average of initial values	
 The process constant are 	is is conservative! The total mass (sum of values) remains t each time step. (N.a = sum of initial values)	
3. This is a stabl	e fixed point	

Beyond Simple Consensus

Generalizable

- Directed graphs (strongly connected) [OS, T]
- Time-varying graphs [T, FL, OS]
- Gossip graphs [G]
- Distributed homeostasis (constraints) [F]
- Applications: Flocking, Synchronization, Vehicle formations, Sensor fusion, Self-adaptive robotic systems.

Citations

- [OS] Olfati-Saber, Murray, 2003
- [FL] Tanner, Jadbabaie, Pappas, 2003
 [G] Kempe et al 03, Xiao & Boyd 2004, Xiao et al 06
 [T] Luc Moreau, CDC 2003
- [F] Fax and Murray, 2004.

Outline

Part I

- We will look at the distributed consensus problem from the readings, and go through the math.
- Part II
 - I will show how ideas from distributed consensus have been used recently to show analytically why/how synchronization and flocking work

PART II

- Synchronization
 - Mirollo and Strogatz, SIAM 1990.
 - Izhikevich, IEEE Trans on Neural Networks,1999
 - Lucarelli and Wang, Sensys, 2004.
- Flocking
 - Reynolds (1987), Vicsek (1994)
 - Tanner, Jadbabaie, Pappas, CDC, 2003 (2)
 - Olfati-Saber, Murray, CDC 2003 - Review: Olfati-Saber, Fax, Murray, 2007
- Both can be seen as a form of collective consensus

6

Lucarelli and Wang, 2004

Local Point of View (slightly modified)

 $\Delta o_i = 1/T + (c. o_i) \cdot \sum p_k(t)$ where $p_k(t) = 1$ if nor k fired

If c is very small, then Can applying Theorem by Izhikevich (1999) can transform a pulse system to a continuous system

 $\Delta O_i = e. 1/T. \sum (O_k(t) - O_i(t))$

Global Point of View

 $\Delta O = -\alpha L O(t)$

Laplacian => Consensus!! Speed of synchronization is affected by v2 (L&W proved a transformation for all jump functions that satisfy M&S criteria)

Flocking

- Reynold's Rules
 - Nearest neighbor behavior
 - Combination: cohesion, repulsion, alignment
 What do these rules guarantee?
- Tanner et al: What defines a Flock?
 - All flock members align their heading
 - All flock members achieve desired spacing
 - A connected flock remains connected (not proved)

• Alignment is like consensus

- Problem is that the network changes at each step
- Need to prove Consensus over time-varying topologies!!

Flocking Mathematically	
r_{i} and v_{i} = position and velocity of node i $v_{i}(t+1)$ = $v_{i}(t)$ + Δv_{i}	
Δv _i = align-with-nbrs (consensus) + maintain "good" distance with nbrs	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
Globally $\Delta v = -Lv(t) + other term$	
Problem is, the topology changes at every step! old world: $v(t) = A^t v(0)$ new world: $v(t) = A(t).A(t-1)A(1)A(0) v(0)$ But it still works!!!!	

