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Distributed Consensus
CS289 Distributed Consensus

Average Consensus

• The Average Height Problem

• The Equal Candy Problem

Distributed Consensus in 
“Real” Distributed Systems

• Estimation in distributed sensors 
(avg, median, product)

• Load-balancing in computer 
networks

• Natural Phenomena (diffusion, 
quorum-sensing)

• Synchronization (heartbeat, 
distributed antennas, wireless)

• Flocking and formation control (fish 
and birds, UAVs)

• Environmentally-adaptive robotic 
systems

Why recognizing “similarity” matters

Distributed computing
Estimation in sensor networks 

(avg. median, etc), 
Load-balancing, synchronizationNatural Systems

Collective Synchronization
Bird Flocking

Diffusion

Distributed Robotics
Formation control and coordination

in unmanned vehicles,
Self-adapting modular robots

Distributed 
consensus

Theoretical Advances
Analyze correctness and performance (without knowing application details)

Analyze for different and complex network (e.g. time-varying networks)
Techniques: Control theory, graph theory



10/4/19

2

Outline
• Part I
– We will look at the distributed consensus 

problem from the readings, and go through the 
mathematical analysis.

• Part II
– I will show how ideas from distributed consensus 

have been used recently to show analytically 
why/how synchronization and flocking work

How do we solve the Problem?

• Problem:
– Given a Graph G= (V,E) undirected, connected
– Each node i in V has some initial value xi(0)
– Each node i has some neighbors nbrs(i)
– Nodes must cooperate to compute the average of initial values.

Answer:
tuition: look at how you differ from your neighbors, move in the right 

direction to reduce your disagreement with your neighbors.
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How do we solve the Problem?

• Problem:
– Given a Graph G= (V,E) undirected, connected
– Each node i in V has some initial value xi(0)
– Each node i has some neighbors nbrs(i)
– Nodes must cooperate to compute the average of initial values.

• Answer:
– Intuition: look at how you differ from your local neighbors, and move in 

the right direction to reduce your disagreement.
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1 3 xi(0) = initial value
xi(t+1) = xi(t) + α∆xi
where ∆xi= ∑[xk(t) - xi(t)]

and k = nbrs(i)

Notice that its NOT OBVIOUS that this 
locally greedy (myopic) should work...
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Globally, we can see that the 
average is 7 (i.e. 28/4)

….But locally, for node C, its 
own value will first go down.

MYOPIC

A B

5 4Lets say we let α=1
Then this will just flip flop

In fact, requires α < 1/dmax
If α=1/2 or α=1/3, this example will work

xi(0) = initial value
xi(t+1) = xi(t) + α∆xi
where ∆xi= ∑[xk(t) - xi(t)]

and k = nbrs(i)

Think of a line graph (continuous set of nodes)
Information must travel, but it can also “slosh” 
around. How do we know it will ever settle?
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Distributed Consensus
0

2

1 3 xi(0) = initial value
xi(t+1) = xi(t) + α∆xi
where ∆xi= ∑[xk(t) - xi(t)]

and k = nbrs(i)

§ Interesting Properties of this Algorithm
• Simple node behavior (Anonymous, leaderless, no params)
• Self-maintaining (provides inherent robustness)
• It works! (provably so if α<1/dmax)

§ Provably Correct
• Will converge to average, on any undirected connected graphs
• Time depends on (a) distance to answer (b) network topology
How do we prove this?

Distributed Consensus
• From a local point of view (node)

• From a global point of view (state matrix)

xi(t+1) = xi(t) + α∆xi
∆xi= ∑[xk(t) - xi(t)] where k = nbrs(i)

= (∑xk(t) - Ni.xi(t)) where Ni = number of nbrs

Distributed Consensus
• From a local point of view (node)

• From a global point of view (state matrix)

xi(t+1) = xi(t) + α∆xi
∆xi= ∑[xk(t) - xi(t)] where k = nbrs(i)

= (∑xk(t) - Ni.xi(t))  where Ni = number of nbrs
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1 3∆x0     | -N0 1  1  0 |  x0(t)      
∆x1  =  |  1 -N1 1  1 |  x1(t)
∆x2     |  1  1 -N2 0 |  x2(t)
∆x3     |  0  1  0 –N3|  x3(t)

In matrix form: ∆X = - L X(t)

Graph Laplacian
Turns out “L” is a famous matrix!!!

L = D-A
(Degree matrix - Adj matrix)

Definition: Spectral properties of a matrix
eigenvalues (scalar) =   v1 v2 v3 ... vn (scalars)
eigenvectors (vector) =   e1 e2 e3 ... en
For matrix A,  A.e1 = v1.e1 (eigen decomposition)

For L(G),
v1 = 0 and e1 = [a a a a a ...]                           (how do you show this?)
v2 = algebraic connectivity                               (how “dense” the graph is)
the other vs and es are also “magical”

∆x0     | -N0  1  1  0 |  x0(t)      
∆x1  =  |  1 -N1  1  1 |  x1(t)
∆x2     |  1  1 -N2  0 |  x2(t)
∆x3     |  0  1  0 -N3 |  x3(t)
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∆X = - L X(t)
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Graph Laplacian
Turns out “L” is a famous matrix!!!

L = D-A
(Degree matrix - Adj matrix)

Definition: Spectral properties of a matrix A
eigenvalues (scalar) =   v1 v2 v3 ... vn (scalars)
eigenvectors (vector) =   e1 e2 e3 ... en
For matrix A,  A.e1 = v1.e1 (eigen decomposition)

For L(G),
v1 = 0 and e1 = [a a a a a ...]                           (how do you show this?)
v2 = algebraic connectivity                               (how “dense” the graph is)
the other vs and es are also “magical”

∆x0     | -N0  1  1  0 |  x0(t)      
∆x1  =  |  1 -N1  1  1 |  x1(t)
∆x2     |  1  1 -N2  0 |  x2(t)
∆x3     |  0  1  0 -N3 |  x3(t)

0

2

1 3

∆X = - L X(t)

Graph Laplacian
Turns out “L” is a famous matrix!!!

L = D-A
(Degree matrix - Adj matrix)

Definition: Spectral properties of a matrix A
eigenvalues (scalar) =   v1 v2 v3 ... vn (scalars)
eigenvectors (vector) =   e1 e2 e3 ... en
For matrix A,  A.e1 = v1.e1 (eigen decomposition)

If G is a undirected connected graph, then for L(G):
v1 = 0 and e1 = [a a a a a ...] and is unique      (for undirected/connected)
v2 = algebraic connectivity and is > 0               (how “dense” the graph is)
the other vs and es are also “magical”

∆x0     | -N0  1  1  0 |  x0(t)      
∆x1  =  |  1 -N1  1  1 |  x1(t)
∆x2     |  1  1 -N2  0 |  x2(t)
∆x3     |  0  1  0 -N3 |  x3(t)
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∆X = - L X(t)

Back to Distributed Consensus
• From a local point of view (node)

• From a global point of view (state matrix)

xi(t+1) = xi(t) + α∆xi
∆xi= ∑[xk(t) - xi(t)] where k = nbrs(i)

= ∑xk(t) - Ni.xi(t) where Ni = number of nbrs

0

2

1 3∆x0     | -N0 1  1  0 |  x0(t)      
∆x1  =  |  1 -N1 1  1 |  x1(t)
∆x2     |  1  1 -N2 0 |  x2(t)
∆x3     |  0  1  0-N3 |  x3(t)

Captures the decentralized process: ∆X = - L X(t)

Proving the algorithm works

• Prove Correctness:
– When it stops, the answer must be the average
– It always stops, from any initial condition

If G is undirected and connected
Consensus is a unique fixed point

• Stops when L. X(t) = 0  
• As we saw earlier, v1 = 0, e1 = [a a a a a..] 

The Consensus is the average of initial values
• The process is conservative! The total mass (sum of values) remains 

constant at each time step. (N.a = sum of initial values)
his is a stable fixed point

X(t+1) = X(t) + α∆X 
where ∆X = - L X(t)
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Proving the algorithm works

• Prove Correctness:
– When it stops, the answer must be the average
– It always stops, from any initial condition

• If G is undirected and connected
1. Consensus is a unique fixed point

• Stops when L. X(t) = 0  
• As we saw earlier, v1 = 0, e1 = [a a a a a..] 

2. The Consensus is the average of initial values
• The process is conservative! The total mass (sum of values) remains 

constant at each time step. (N.a = sum of initial values)
3. This is a stable fixed point

X(t+1) = X(t) + α∆X 
where ∆X = - L X(t)

Proving the algorithm works

• Prove Correctness:
– When it stops, the answer must be the average
– It always stops, from any initial condition

• If G is undirected and connected
1. Consensus is a unique fixed point

• Stops when ∆X = - L X(t) = 0  
• As we saw earlier, v1 = 0, e1 = [a a a a a..] (and v2 > 0)

2. The Consensus is the average of initial values

3. This is a stable fixed point

X(t+1) = X(t) + α∆X 
where ∆X = - L X(t)

Proving the algorithm works

• Prove Correctness:
– When it stops, the answer must be the average
– It always stops, from any initial condition

• If G is undirected and connected
1. Consensus is a unique fixed point

• Stops when - L X(t) = 0  
• As we saw earlier, v1 = 0, e1 = [a a a a a..] (and v2 > 0)

2. The Consensus is the average of initial values
• The process is conservative! The total mass (sum of values) remains 

constant at each time step. (N.a = sum of initial values)
3. This is a stable fixed point

X(t+1) = X(t) + α∆X 
where ∆X = - L X(t)

Proving Stability
• Metric of “disagreement” 

(at time t, what’s the system error?)

• Prove that with each step, the dynamics of this system will 
cause this disagreement to be reduced
– At each step, I reduce the disagreement by a  fraction that depends on 

topology…

– While initial convergence may be slow,  reaction to perturbations is 
extremely fast!

M(t) = ∑(xi(t) - avg)2    sum of squared error 

M(t+1) <= M(t) - 2.v2.M(t)
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Beyond Simple Consensus

Generalizable
• Directed graphs (strongly connected) [OS, T]

• Time-varying graphs [T, FL, OS]

• Gossip graphs [G]

• Distributed homeostasis (constraints) [F]

• Applications: Flocking, Synchronization, Vehicle formations, 

Sensor fusion, Self-adaptive robotic systems.

Citations
– [OS] Olfati-Saber, Murray, 2003

– [FL] Tanner, Jadbabaie, Pappas, 2003

– [G] Kempe et al 03, Xiao & Boyd 2004, Xiao et al 06

– [T] Luc Moreau, CDC 2003

– [F] Fax and Murray, 2004.

Outline
• Part I
– We will look at the distributed consensus 

problem from the readings, and go through the 
math.

• Part II
– I will show how ideas from distributed consensus 

have been used recently to show analytically 
why/how synchronization and flocking work

PART II
• Synchronization

– Mirollo and Strogatz, SIAM 1990.
– Izhikevich, IEEE Trans on Neural Networks,1999
– Lucarelli and Wang, Sensys, 2004.

• Flocking
– Reynolds (1987), Vicsek (1994)
– Tanner, Jadbabaie, Pappas, CDC, 2003 (2)
– Olfati-Saber, Murray, CDC 2003
– Review: Olfati-Saber, Fax, Murray, 2007

• Both can be seen as a form of collective consensus

Mirollo and Strogatz Sync (1990)
How does a firefly (node) behave?

oi(t+1) = oi(t) + ∆oi
∆oi = 1/T + jump(oi).pi(t)

Where pi(t) = 1 if some neighbor fired (“pulse”) 
A simple jump function is jump(oi) = c. oi

One can understand how this behaves for 2 oscillators
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Lucarelli and Wang, 2004
Local Point of View (slightly modified)

∆oi = 1/T + (c. oi) . ∑pk(t)
where pk(t) = 1 if nbr k fired

If c is very small, then
Can applying Theorem by Izhikevich (1999)
can transform a pulse system to a continuous system

∆Oi = e. 1/T. ∑(Ok(t) - Oi(t))

Global Point of View
∆O = -αL O(t)

Laplacian => Consensus!!
Speed of synchronization is affected by v2
(L&W proved a transformation for all jump functions that satisfy M&S criteria)

Flocking
• Reynold’s Rules

– Nearest neighbor behavior 
– Combination: cohesion, repulsion, alignment
What do these rules guarantee?

• Tanner et al: What defines a Flock? 
– All flock members align their heading
– All flock members achieve desired spacing
– A connected flock remains connected (not proved)

• Alignment is like consensus
– Problem is that the network changes at each step
– Need to prove Consensus over time-varying topologies!!

ri and vi = position and velocity of node i
vi(t+1) = vi(t) + ∆vi

∆vi= align-with-nbrs (consensus)
+ maintain “good” distance with nbrs

∆vi= ∑[vk(t) - vi(t)] + ∑ gradient f(rik)
f(rik) = infinity if too close, 0 if perfect, high if too far

Globally
∆v= -Lv(t) + other term

Problem is, the topology changes at every step!
old world:  v(t) = At v(0)
new world: v(t) = A(t).A(t-1).....A(1)A(0) v(0)

But it still works!!!!

Flocking Mathematically Why recognizing “similarity” matters

Distributed computing
Estimation in sensor networks 

(avg. median, etc), 
Load-balancing, synchronizationNatural Systems

Collective Synchronization
Bird Flocking

Diffusion

Distributed Robotics
Formation control and coordination

in unmanned vehicles,
Self-adapting modular robots

Distributed 
consensus

Theoretical Advances
Analyze correctness and performance (without knowing application details)

Analyze for different and complex network (e.g. time-varying networks)
Techniques: Control theory, graph theory
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Swarm Intelligence

Clustering
Stigmergy
Data Sorting &
Clustering

Collective
Transport
Distributed 
Concensus
(Physics)

Construction 
Self-Assembly
Self-assembly; Complex 
Stigmergy

House Hunting
& Quorum sensing
Distributed Consenus
Best-of-N selection; Symmetry-
breaking

Library of 
Decentralize
d Algorithms

Task
Allocation
Stigmregy
Threshold-based 
division of labor

Flocking
& Synchrony
Distributed Consensus
(Spatial/Time)

Foraging 
Stigmergy
Search 
Optimization
Routing


