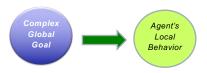

Self-Assembly in Nature Turing Patterns, Morphogenesis, and Embryo Development

CS289


New Topic: Cellular Computing

- Transition from "Swarm Intelligence" to "Multicellular Intelligence"
 - Inspiration: Colonies of "Cells"
 - How has multicellular behavior, in particular morphogenesis, influenced new ways of thinking?
- Models of Morphogenesis ("form")
 - D'Arcy Thompson, On Growth and Form, 1917
 - · Von Neumann and Ulam, Cellular Automata, 1940s
 - Alan Turing, Turing patterns, 1952
 - Aristid Lindenmayer and Prusinkiewicz, L-systems, 1968
 - · Lewis Wolpert, Embryo development, 1980s

New Topic: Cellular Computing

- Transition from "Swarm Intelligence" to "Multicellular Intelligence"
 - Ins
 - Upcoming Lectures – Ho
 - - Biology (Today): Multicellular models and inspiration
 - Robotics: Self-assembling "Cellular" Robotic Systems
- Other: Cellular Automata Theory, DNA self-assembly, Mode Synthetic Biology
 - Alan Turing, Turing patterns, 1952
 - · Aristid Lindenmayer, L-systems, 1968
 - Lewis Wolpert, Embryo development, 1980s

New Theme: Global-to-Local

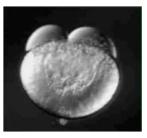
- · Library of "local" algorithms inspired by cells
- How do we compose/derive "local" algorithms to achieve a more complex global goal?

Context: Self-organizing Complex Structure

How do cells do it? Pattern Self-Assembly Structure Flad development Flad development

How do cells do it?

Pattern


Turing Patterns

Turing's Question

 How does one start with identical cells, but end up with a asymmetric, highly patterned organism?

Turing's Question

 How does one start with identical cells, but end up with a asymmetric, highly patterned organism?

Turing's Question

- How does one start with identical cells, but end up with a asymmetric, highly patterned organism?
- Solution:
 - Nothing is ever "identical". There is always noise.
 - If a system could amplify this noise, then it could move from symmetry to asymmetry.

The Chemical Basis of Morphogenesis, A. M. Turing, Philosophical Trans. of the Royal Society of London, 1952.

Turing's Example

- Suppose that we had two chemicals ("morphogens")
 - X and Y
 - Reaction with each other
 - Diffuse in space

Turing's Example

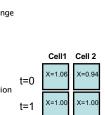
- Suppose that we had two chemicals ("morphogens")
 - X and Y
 - Reaction with each other
 - Diffuse in space
- Reaction-Diffusion Equations $dX/dt = (5X - 6Y + 1) + R_x \nabla^2 X$ $dY/dt = (6X - 7Y + 1) + R_y \nabla^2 Y$ where $R_x = 0.5$, $R_y = 4.5$

Turing's Example

- · Suppose that we had two chemicals ("morphogens")
 - X and Y
 - Reaction with each other
 - Diffuse in space
- Reaction-Diffusion Equations
 $$\begin{split} dX/dt &= (5X - 6Y + 1) + R_{x} \nabla^{2} X \\ dY/dt &= (6X - 7Y + 1) + R_{y} \nabla^{2} Y \end{split}$$

where $R_x = 0.5$, $R_y = 4.5$

- Basic Idea:
- Reaction or Diffusion by itself => steady state X=Y
- But together, they can "amplify" X-Y ...


Turing's Example

- Reaction Part
 - dX/dt = (5X 6Y + 1)
 - dY/dt = (6X 7Y + 1)
 - Steady state, is when there is no more change (when dX/dt = dY/dt = 0)
 - Then, X=Y=1

Turing's Example

- Reaction Part
 - dX/dt = (5X 6Y + 1)
 - dY/dt = (6X 7Y + 1)
 - Steady state, is when there is no more change (when dX/dt = dY/dt = 0)

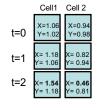
 - Then, X=Y=1
- Diffusion Part
 - Suppose I had two "cells" with different concentrations of X
 - Then net flow from high to low concentration
 - $dX/dt = R_x \nabla^2 X \qquad (Rx = 0.5)$
 - dX/dt at CeII 1= 0.5 (X_{ceII2} X_{ceII1})

Turing's Example

- Reaction-Diffusion together
 - $dX/dt = (5X 6Y + 1) + R_x \nabla^2 X$
 - $dY/dt = (6X 7Y + 1) + R_y \nabla^2 Y$ $R_x = 0.5, R_y = 4.5$

Turing's Example

- Reaction-Diffusion together
 - $dX/dt = (5X 6Y + 1) + R_x \nabla^2 X$
 - $dY/dt = (6X 7Y + 1) + R_y \nabla^2 Y$ $R_x = 0.5, R_y = 4.5$


Cell1 Cell 2 X=0.94 Y=0.98

X Diffuses 1->2 by 0.06 Y Diffuses 1->2 by 0.18 BUT

X is created in Cell 1 by 0.18 Y is created in Cell 2 by 0.22

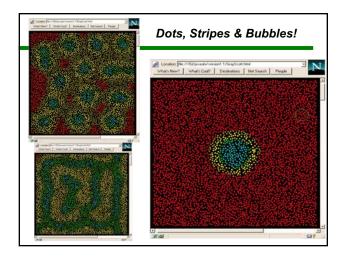
Turing's Example

- Reaction-Diffusion together
 - $dX/dt = (5X 6Y + 1) + R_x \nabla^2 X$
 - $dY/dt = (6X 7Y + 1) + R_y \nabla^2 Y$ $R_x = 0.5, R_y = 4.5$

X Diffuses 1->2 by 0.06 Y Diffuses 1->2 by 0.18 BUT

X is created in Cell 1 by 0.18 Y is created in Cell 2 by 0.22

The difference keeps on growing...


(non-uniform equilibrium)

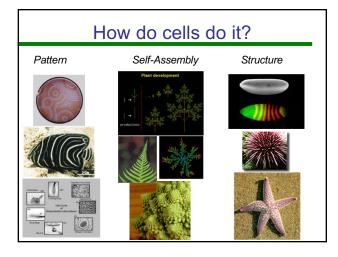
Turing Patterns

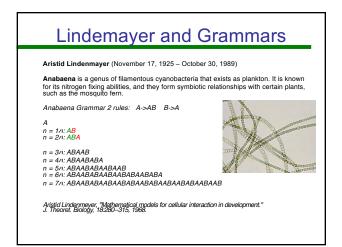
· What kinds of patterns can reaction-diffusion systems generate?

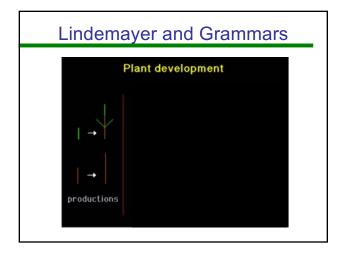
Turing Patterns

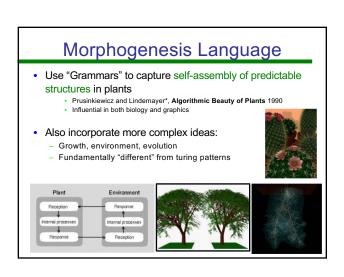
- · What kinds of patterns can reaction-diffusion systems generate?
- Activator-Inhibitor Model (Grier & Meinhardt, 1975)
 - Two morphogens U and V
 - U is an activator (creates itself)
 - U also creates its own inhibitor (V)
 - V diffuses much faster than U
 - (Grier, Meihardt, 1972, Activator-Inhibitor Model)
- Example: Gray Scott Equations
 - How does the system behave for different parameters? (Amorphous Computer Simulation)

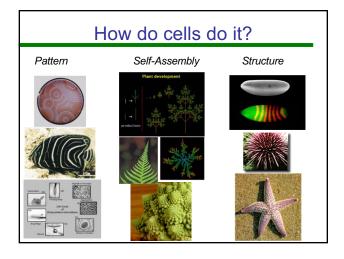
Turing Patterns in Nature

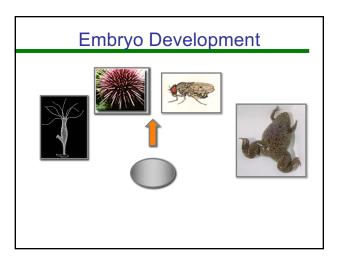

- · Chemical/Physical
 - Belousov-Zhabotinsky (1951)
 - Synthetic Chemical Systems (Swinney et al, Nature1994)
- Animal Patterns
 - Seashells (Meinhardt, 1970s)
 - Animal Coats
 - Angelfish (Kondo & Asai1995)
- Multicellular Behavior
 - Slime mold
 - Bone patterning

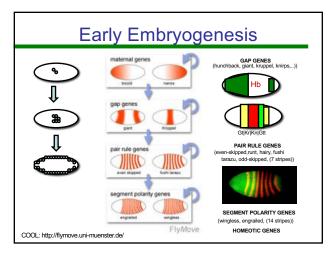


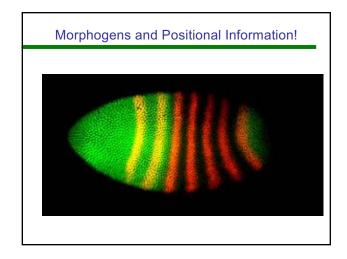

Cellular Automata Stanislaw Ulam and John von Neumann (1940s) Simulate "discrete" biology & physics; Self-replicating machines • Conway's Game of Life (1970s) A simple intuitive rule....amazing dynamic patterns! Turing Complete! (2002) Wolfram, A New Kind of Science, 2002 Systematic classification of all 1D two-state CA rules

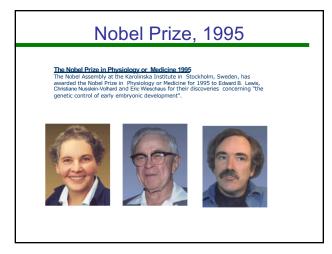

Beyond spots and stripes?

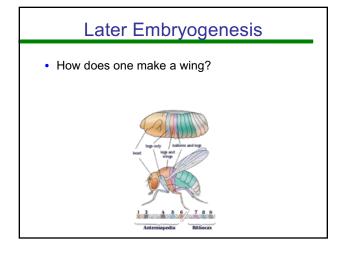

- · Turing was wrong about embryogenesis
 - However his work had a significant impact on biology
 - Coined the word "morphogen", the notion of a chemical that directed cell fate. R&D eqns are commonly used
- But how do we move beyond spots and stripes?

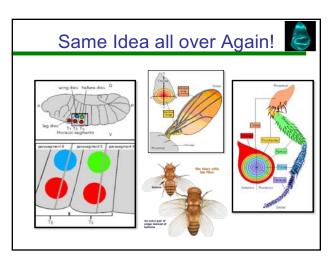












and Again Frog (Xenopus) development Animal-Vegetal Axis = Maternal Gradients - Dorsal-Ventral Axis = Spemann Organiser

Common Design Principles

· Are there common design principles?

Common Design Principles

- · Catalog of Cell Strategies
 - · Positional information and Morphogens
 - · Cell Differentiation and Compartments
 - · Lateral Inhibition, Induction
 - Cell Death

positional information in several seminal papers

Higher-level Structural Principles

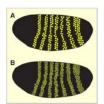
- · Generative Programs
 - Patterns are created and elaborated incrementally
 - Shape is encoded as a "construction" process
- Structural Reuse (e.g "branching structures" in humans)
- · Modularity (e.g. imaginal discs as "subroutines")

Common Design Principles

- · Catalog of Cell Strategies
 - · Positional information and Morphogens
 - · Cell Differentiation and Compartments
 - Lateral Inhibition, Induction

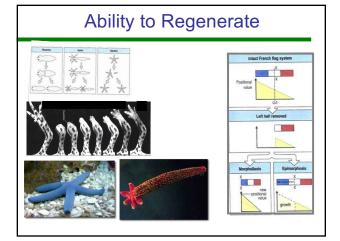
· Generative F

- Patterns

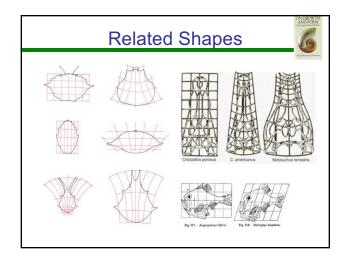

Higher-level S

• Cell Death High-Level Properties!

- Ability to be Robust
- Ability to Scale
- Ability to Regenerate
- Ability to Evolve
- Shape is encoded as a "construction" process • Structural Reuse (e.g "branching structures" in humans)
- · Modularity (e.g. imaginal discs as "subroutines")


Ability to be Robust

- · Remarkably most processes can tolerate:
 - Temperature variation
 - Cell to cell variability
 - Mistakes like extra divisions
 - Cell Death and large damage
 - Variation in scale
- Still poorly understood



[See paper by Day and Lawrence]

Ability to Scale • Similar structures occur at a wide variety of scales [French Flag Problem: Lewis Wolpert]

Common Design Principles

- Are there common design principles?
 Yes
- Can we capture these "principles" to design our own systems (complex shape, robustness, repair, modularity)

New Theme: Global-to-Local Agent's Local Behavior How do we compose these "local" algorithms to achieve a more complex global goal? Can we automatically derive the "local agent rules" from the global goal?