BST 273: Introduction to
Programming

Eric Franzosa (franzosa@hsph.harvard.edu)

Kevin Bonham (kbonham@broadinstitute.org)

http://franzosa.net/bst273

http://franzosa.net/bst273
http://franzosa.net/bst273

Outline for today’s class

* Course overview
* Introduction to programming & Python
* Computer setup

Course Overview

Syllabus

* Everything I’'m about to go over is covered in the course syllabus

* Syllabus is available in the “Course Documents” module on Canvas
- We will visit Canvas later in the lecture
- Who doesn’t already have access to Canvas?

Course overview

e BST 273 is a half-semester introduction to computer programming
- Meetings Tuesdays and Thursdays (TR), 11:30am-1pm in this room (FXB G13)

* In-class activities, but no separate lab component

* Intended for students who have never programmed before
- Experience running commands in computing environments (R, MATLAB) OK
- Otherwise talk to me

* Entry-point for other courses with a programming prerequisite

Course Staff

* Instructors (2):

- Eric Franzosa
- Kevin Bonham
o Calling us “Eric” and “Kevin” is fine

e Teaching Assistants (3):
- Shirley Liao
- Emma Thomas
- Marina Cheng

e Contact us through Canvas or via the email addresses from the syllabus
- |f emailing, please include “BST 273” in the subject line

Course Schedule

Week Date Day Unit Lecture
0 09/04/2018 T |[Fundamentals |Orientation
0 09/06/2018 R |Skills Working on the command line
1 09/11/2018 T |Fundamentals |Variables, scalar data types and methods
1 09/13/2018 R |Fundamentals |Collection data types and iteration
2 09/18/2018 T |Fundamentals |Conditional logic and flow of control
2 09/20/2018 R [Fundamentals | Working with modules, examples with file I/0
3 09/25/2018 T |Fundamentals |Writing functions, references vs. data
3 09/27/2018 R |Fundamentals |Making an executable script
4 10/02/2018 T [Skills Version control and intro final projects
4 10/04/2018 R | Skills Testing, debugging, getting online help
5 10/09/2018 T Interacting with external programs
5 10/11/2018 R Regular expressions
6 10/16/2018 T Scientific computing with Python
6 10/18/2018 R Object-oriented Python
7 10/23/2018 T Parallelism and workflows in Python
7 10/25/2018 R Next steps for developing as a programmer

Textbooks / Readings

* Think Python 2" Edition by Allen B. Downey
- Required
> Available in its entirety online at https://greenteapress.com/wp/think-python-2e/
- Available for purchase in-print if desired (not required)
- Readings will be listed per-lecture on Canvas

O'REILLY"

* Additional online readings will be linked from Canvas

9/4/2018

https://greenteapress.com/wp/think-python-2e/
https://greenteapress.com/wp/think-python-2e/
https://greenteapress.com/wp/think-python-2e/
https://greenteapress.com/wp/think-python-2e/
https://greenteapress.com/wp/think-python-2e/
https://greenteapress.com/wp/think-python-2e/

Course structure

* Five homework assignments (13% x 5 = 65%)
* Final project (25%)
* Participation (10%)

Homework assignments

* Five assignments total (each 13% of final grade, 65% total)

* Weekly starting next week and excluding last two weeks

- i.e. Final Project work replaces homeworks here
* Published Mondays on Canvas
* Due via electronic Canvas hand-in the following Friday by 11:59pm
* Each homework will be a Python script

* More formatting details during next Tuesday’s lecture

> (Once first assignment is published)

Final project

* 25% of final grade (~2 homeworks)

 Complete and document a Python script to solve a problem in data analysis

* A number of options will be provided, or you can design your own
- Options + signups will go out the third-to-last week of class

- Must seek instructor approval if designing your own (details to follow)

* Final project work will go on during last two weeks of class

* Due Friday October 26t 11:59pm (end of last class week)

Participation

* 10% of final grade

* This class has an extensive hands-on, in-class component
- We expect you to be here and participate

» Attendance will be quantified using Canvas “Quizzes”
- No right or wrong answers, not graded, but must submit during class
- Practice “quiz” today re: office hours will have a longer submission window

* Breakdown
- Augmented by e.g. asking/answering questions in class
o Full credit (10%): 0-1 unexplained absences
- Medium credit (5-9%): 2-3 unexplained absences
- Low credit (0-4%): 4+ unexplained absences

Late-work policy

* Please hand in assignments on time

* If 1 day late, assignment will be graded out of a maximum of 90%
* If 2 days late, maximum of 75%

* If 3 days late, maximum of 50%

* If 4+ days late, no credit

* Extensions may be granted if requested with reason at least 24 hours in
advance of the assignment deadline

Collaboration policy

* DON'T

- Look at / copy another student’s assignment code

- Show your assignment code to another student

- Post assignment code online (in the Canvas Discussion Board or elsewhere)

- Treated as violations of the Academic Integrity policy (linked in full via Syllabus)

* DO
- Seek help for assighment code during Instructor/TA office hours
- Work with other students on in-class programming activities
- Discuss general concepts with other students

- Consult instructors if you have questions about the OK-ness of your collaboration

Other class policies

* Please bring a laptop with you to class for in-class programming

o |f this poses a problem, please talk to us

e Audits are OK if there’s room — priority goes to registered students

- Contact me to be added to Canvas as a “guest”

* We know it’s lunch time, but please don’t eat during class

o |f you bring a drink, please keep it off the tables to avoid computer spills

Office hours

* Instructor Office Hours
o Currently Fridays, 11am-12pm, SPH2 rm. 434
- | will be there at the above time this Friday for general course questions
- Some room to negotiate on time if this is universally bad (see Canvas poll)

* TA Office Hours

- To be scheduled via Canvas poll
- 1 hour per TA per week
- Biased toward the end of the week (closer to homework hand-in)

* Fill out Canvas poll ASAP

- Would like to have office hours finalized by next class

Questions?
(franzosa@hsph.harvard.edu)

Look at Canvas

Philosophy of

Programming

Learning to Program

* Why do it?
- Make easy tasks easy
- Make hard tasks possible
- Improve accuracy and efficiency in your work

- It’'s empowering!

e What does it take?

- Learn to identify problems that computers can solve
- Learn to describe those problems in a way that computers can understand

- Learn a programming language to translate those descriptions into code

Learning to Program

* What does it take?
- Learn to identify problems that computers can solve (not too bad)
- Learn to describe those problems in a way that computers can understand (harder)
- Learn a programming language to translate those descriptions into code (not too bad)

- Analogous to learning spelling/grammar vs. learning to write well

9/4/2018

21

How computers “think”

 Computers are well-suited to solving problems that can be expressed as
transformations of data (converting input data into output data)

* These transformations are algorithms: predefined rules or calculations we
apply to data in pursuit of solving problems

* The goal of programming is to translate an algorithm so a computer can
understand it and apply it to arbitrary data

Input :
Algorithm

Output
Data

Sum of numbers

List of numbers
Pattern and text Locations of pattern in text

Atmospheric data Weather prediction

9/4/2018

22

How computers “think” (pros and cons)

 Computers work very quickly, performing millions of calculations per second

- Computers are fast, even when programmed naively

 Computers do exactly what you tell them to do*

- They don’t make their OWN mistakes

e Computers don’t read between the lines / have good intuition

- They do only what you tell them to do explicitly

 Computers do exactly what you tell them to do*

- They will follow YOUR mistakes without question, often without telling you

9/4/2018

23

An example with sorting

Consider some unsorted numbers (input data):

25 4 11 9 1 8 10 2 2 6

I’'m sure you could tell me that the sorted version (output data) is this:

1 2 2 4 6 8 9 10 11 25

But how did you get there?

An example with sorting

Consider some unsorted numbers (input data):

25 4 11 9 X 8 10 X 2 6

An algorithm for sorting (that works well for us humans) is to iteratively find,
copy, and eliminate the smallest remaining number...

25 4 4 4 1 1 1 1 1 1
25 4 4 4 4 4 4 2 2 2
Output data:

1 2 2 4 6 8 9 10 11 25

9/4/2018

25

An example with sorting

» “Keep finding the smallest number” is a generic algorithm
o |t will work on any numbers (ties, fractions, etc.)

o |t will work on arbitrarily large lists of numbers

* Note how the algorithm defined a simple but explicit procedure (“keep finding
the smallest number”) and repeated it until we had a complete solution

> This is a common theme in algorithms / programming

> Unlike us, a computer can repeat simple steps without getting tired / making mistakes

* Practice decomposing intuitive procedures into generic algorithms

- We'll do something with this on the first homework

Programming vs. Computer Science

* Computer Science is concerned with, among other things, finding the best
algorithm to solve a given problem
- With “best” usually defined as “fastest” or “requiring the fewest steps”

* The “keep finding the smallest number” algorithm is not particularly efficient
because it requires us to repeat a lot of work
- E.g. repeatedly considering/rejecting the first number, 25, as the smallest

* There are faster search algorithms out there, but...

First Rule of Programming:

First get it right — worry about speed later (or never)

9/4/2018 27

Questions?
(franzosa@hsph.harvard.edu)

Python

Introduction to Python

 We'll be learning to program in Python in this course

* Python exists today in two major flavors

- Python 2.x (getting old)
- Python 3.x (the best place to get started)

- Aside from a couple of things, they are superficially very similar

* Invented by Dutch programmer Guido van Rossum c. 1991

* Named after Monty Python, not the snake

* Python programmers sometimes called “Pythonistas”

- Mostly by themselves...

9/4/2018 30

Introduction to Python

* Python is a “high-level” programming language
- Designed to be easier for humans to read than computers
- Emphasis on words over symbols in code
- White space used to denote blocks of code (rather than symbols)

* Python is an interpreted programming language
- Computer directly follows your code, without pre-compiling to something else

 Large “Standard Library” (built-in code) + 1,000s of installable packages

Second Rule of Programming:

Re-using working code is “appropriately lazy”
Ex. Python sorted() function

9/4/2018

31

Introduction to Python

* Python favors speed/ease of development over speed of execution

- Good for solving personal research questions (run-once scripts)
- Good for solving objectively “fast” problems (seconds of compute)

- Good for “stitching” results from highly optimized code
* Blazingly fast compared to manual computation

 Slow parts can be sped up (optimized) later if needed

- We’'ll talk about fast numerical computing in Python later in the course

e Used across many industries and academic fields

Introduction to Python

* Python bears a striking resemblance to “pseudocode”: a language-agnostic
way of representing computer algorithms (often in publications)

Example of pseudocode Example of Python code
Algorithm 2: Division def quicksort(list):
1 function divide (x. y); 1t len(list) <= 1:
Input: Two n-bit integers x and y, where y > 1 return list
2 gt;tiué:tlziquonent and remainder of x divided by y pivnt _ list[flen[list)-ljfﬂ
3 return (g.r) = (0.0) list.remove(pivot)
s else o less = []
i greater = []
7 | if xis odd then for num in list:
8 | r=ur+ if num <= pivot:
9 end
w0 | ifr>ythen less.append(num)
1 | r=r—y,q=q+1 else:
i ::Sm e greater.append(num)
—_—_— ' return quicksort(less) + [pivot] + quicksort(greater)

9/4/2018

Not that it’s a popularity contest, but...

Javascript
Python
Java

Ruby

PHP

C++

Css

C#

Go

(o
Typescript
Shell
Swift
Scala
Objective-C

Most Pull Requests 2017

Most In-Demand Languages

Jav
JavaScrip}
Cc
Pythor
C+4
q
PHH
Ruby
Gd
Per
PL/SQL
Scalg
Objective-Q
ApeN
R
Swif§

9/4/2018

SAS
MATLABE
Crysta
Scratch

Top Programming Languages

16.00% =
i —— I Growth in Stack Overflow
C < [.
= 3 | questlons
Python g 12.00% —/
C# .
JavaScript £ 1000% = h\/\ /
VB.NET| @ i /) /\ \«/ \/ \
R| © - A\
MATLAB g T~ WP/
Swift | 3 6.00% — A
Objective-C % £
Assembly ® 4.00% < rt S - —
Perl| O / . Nl W sl .
Ruby | =% A Pt \/"/\ ™\
Delphi § 2.00% ~7 7> ’:{}/\ 7
- | == el
ScratCh °\° 0000/0"' T 71 T Al T 1 . N B Sl e
PL/SQL 2009 2010 2011 2012 2013 2014 2015 2016 2017
Visual Basic
Year

Tag

®

CH
java
php
python

c++
objective-c
swift

c

r

ruby
vb.net

perl
assembly

Images sourced from:

https://stackify.com/popular-programming-languages-2018/

34

Questions?
(franzosa@hsph.harvard.edu)

Transition to

Computer Setup

