
 

1 
 

 
BST 273 

Introduction to Programming 
Fall 2 2019 

MW, 11:30 - 1:00pm, FXB G13 
 

Version: 2019-10-29 
 
 
Instructor Information 
 
Faculty 
 
Dr. Eric Franzosa 
Research Scientist 
Office: HSPH, Building 1, Room 412 (office hours will be held at another location) 
E-mail: franzosa@hsph.harvard.edu (please include “BST 273” in the subject line) 
 
Office hour:  
Friday, 11-12pm, HSPH, Building 2, Room 428 
 
Teaching Assistants 
 
Yuri Ahuja 
E-mail: yuri_ahuja@hms.harvard.edu 
Office hour: Weds, 2-3pm, HSPH, Building 2, Room 434 
 
Luli Zou 
E-mail: lulizou@fas.harvard.edu 
Office hour: Weds, 4-5pm, HSPH, Building 2, Room 434  
 
Kareem Carr 
E-mail: kareemcarr@fas.harvard.edu 
Office hour: Thurs, 1-2pm, HSPH, Building 2, Room 401 
 

mailto:franzosa@hsph.harvard.edu


 

2 
 

 
 
Credits 
 
2.5 credits  
 
Course Description 
 
This is an introductory course on computer programming in Python 3. Students will begin by exploring the fundamental elements of 
a computer program (e.g. variables, data objects, functions/methods, and flow of control) along with their associated Python syntax. 
In the second part of the course, students will gain familiarity with modules in the Python Standard Library for reading and writing 
data, interacting with external programs, and writing command-line interfaces. The course concludes with an introduction to a 
number of advanced topics, including scientific computing and Object-Oriented Design. Interspersed with programming content, 
students will be introduced to important related skills, such as debugging and command-line navigation. 
 
The course consists of two 90-minute meetings per week, divided into lecture/discussion sections and hands-on activities. Students 
will complete weekly assignments to reinforce their new programming skills, starting with basic tests of new syntax and leading 
toward the completion of functional Python scripts. Each student will complete a final project (of their own design, or based on a 
template) that involves developing, testing, and documenting a Python script to solve a problem in data analysis. 
 
Note: This course is NOT intended as an introduction to the Python language for experienced programmers. Students with prior 
programming experience (excluding MATLAB and R) should consult with the instructor before enrolling. 
 
Pre-Requisites 
 

 None 

 
Learning Objectives 
 
Upon successful completion of this course, you should be able to: 

 
 Design, write, and test Python scripts to solve problems in data analysis 

 Identify and invoke appropriate (existing) software modules to aid in script design 

 Enroll in more advanced courses requiring a programming background 

 Learn additional programming languages through self-guided study 



 

3 
 

 
Course Readings 
 
The required (free, online) textbook for this course is Think Python 2e by Allen B. Downey (Green Tea Press). The textbook is 
available for browsing or download at https://greenteapress.com/wp/think-python-2e/. Make sure you are looking at the second 
edition (which is updated to Python 3). The website also provides a link to purchase a hard copy of the book (not required). 
 
Author: Allen B. Downey 
Title: Think Python: How to Think Like a Computer Scientist 2nd Edition 
Publisher: O'Reilly Media; 2 edition (December 28, 2015) 
ISBN-10: 1491939362 
ISBN-13: 978-1491939369 
 
Recommended books: 
 
Get Programming: Learn to code with Python 
Author: Ana Bell 
Title: Get Programming: Learn to Code with Python 
Publisher: Manning Publications; 1 edition (April 19, 2018) 
ISBN-10: 1617293784 
ISBN-13: 978-1617293788 
 
Students will also complete reading assignments from the official Python documentation: https://docs.python.org/3/. 
 
Course Structure  
 
Canvas Course Website:  https://canvas.harvard.edu/courses/62213 
 
Technical Information: This course is suitable for students with no programming experience. The course will also be beneficial 
for students whose exposure to programming has been informal or limited to numerical computing environments (such as MATLAB 
or R). Students are expected to bring a laptop computer to class to participate in in-class programming activities. Students who do 
not have access to a laptop should contact the instructors to make alternative arrangements. 
 

  



 

4 
 

Grading, Progress and Assessment 
 
This course assumes student participation. General discussion of theory and practice is encouraged and expected of all students. At a 
minimum, being informed requires class attendance, completion of assigned readings and homework. Class attendance and 
thoughtful participation are important and will be reflected in part in the final grade. Please notify the instructor of an anticipated 
absence at least 24 hours before the lecture meeting. 
 
The final grade for this course will be based on: 
 

o Four homework assignments (15% × 4 = 60%)  
o Final project (30%)  
o Participation (10%) 

 
Homework assignments (60%) 
 
After the first week, students will complete weekly homework assignments to reinforce the previous week’s material (four in total). 
Homework will be posted by class time on Monday and will be due the following Friday (11:59pm) via Canvas hand-in. Homework 
assignments are designed to teach Python syntax and encourage computational thinking around algorithmic challenges. Points will 
be scored based on the syntactic and semantic correctness of the submitted results, with students expected to match pre-set input, 
output, and behavioral specifications for written code. Especially early on, assignments will also include a small number of written 
answers to assess conceptual understanding. 
 
Final Project (30%) 
 
Students will work on final projects during the final two weeks of the course. Final projects will involve an open-ended 
implementation of a Python script to solve a problem in data analysis. Students will be able to choose between completing a default 
final project specification (introduced during the third-to-last week of the course) or proposing their own final project. (Students 
electing the latter option MUST seek and receive instructor approval before proceeding.) In addition to working code, students will 
turn in sample input and output data along with documentation in the form of a README file (as a single Canvas hand-in). Projects 
will be graded based on the correctness of the submitted code and completeness of the accompanying documentation. 
 
Participation (10%) 

Students are expected to attend and participate in lecture and in-class activities. Participation includes physical presence in class, 
asking and answering questions, sharing viewpoints in constructive and respectful ways, working diligently on in-class assignments, 
and otherwise actively engaging with other students and the course instructors. The floor of the participation grade will be set by the 
completion of ungraded in-class surveys roughly every-other lecture and will fall off exponentially after the first missed survey. 



 

5 
 

Collaboration Policy 
 
Students are expected to complete their out-of-class assignments individually. While it is tempting to compare code with other 
students to check correctness and/or move past a stumbling block, within the context of homework assignments and the final project, 
this is strictly not allowed. Deviations from this policy will be considered a violation of the school’s Academic Integrity policy and 
treated accordingly. 
 
Outside of comparing assignment code, students are allowed and encouraged to help each other in and outside of class. This includes 
working together or comparing code during in-class programming assignments. In addition, discussing general concepts (e.g. “could 
you explain the difference between a list and a set?”) is also allowed, as long as it does not involve specific review of assignment code. 
(As a general rule, if the people in the discussion are not looking at the current assignment, then you are probably not reviewing 
assignment code.) 
 
To help with checking code correctness, assignments will be bundled with expected inputs and outputs for testing. To help with 
stumbling blocks, students are encouraged to reach out to the instructors and/or TAs during the week (preferably during scheduled 
office hours). Searching for help online (e.g. “what does ‘ZeroDivisionError’ mean?”) is also allowed and encouraged. However, 
posing specific homework questions online (e.g. via StackExchange) is not permitted. 
 
Late Work Policy 
 
The maximum score for late work will fall rapidly: 90% if one day late, 75% if two days late, 50% if three days late, and all credit lost if 
four or more days late. Extensions may be granted if requested with reason at least 24 hours in advance of the assignment deadline. 
 
Final Grades 
 
Final letter grades will be curved based on the percentiles of total scores received by students in the class. 
 
  



 

6 
 

Lecture & Assignment Schedule 
 
Lec Date Day Unit Lecture Part I Assignment 

01 2019-10-28 M Orientation Welcome and setup # 

02 2019-10-30 W Fundamentals Data, transformations, and variables # 

03 2019-11-04 M Fundamentals Collections (Lists) and iteration HW1 

04 2019-11-06 W Fundamentals Collections (Dicts, Sets) and helper functions HW1 

# 2019-11-11 M # HOLIDAY (Veterans Day) HW2 

05 2019-11-13 W Fundamentals Conditional logic and flow of control HW2 

06 2019-11-18 M Fundamentals Writing functions, references vs. data HW3 

07 2019-11-20 W Fundamentals Introduction to modules and file I/O (sys, csv) HW3 

08 2019-11-25 M Review Testing, debugging, getting online help # 

# 2019-11-27 W # HOLIDAY (Thanksgiving) # 

09 2019-12-02 M Special topics OS and software interaction (os, subprocess) HW4 

10 2019-12-04 W Special topics Command-line interfaces (argparse) HW4 

11 2019-12-09 M Special topics Regular expressions (re) Final Project 

12 2019-12-11 W Special topics Scientific computing with Python (numpy, scipy, pandas) Final Project 

13 2019-12-16 M Special topics Object-oriented programming Final Project 

14 2019-12-18 W Wrap-up Next steps for developing as a programmer Final Project 

 
*Note: lecture topics, especially those in the second half of the course, are subject to change pending class progress and interests. 

 


