
Lecture 02: Data, Transformations, and VariablesLecture 02: Data, Transformations, and Variables

Eric Franzosa, Ph.D.

franzosa@hsph.harvard.edu

OutlineOutline

Elementary Python data types
Functions, methods, and
operators
Variables

Aside: CommentsAside: Comments

In addition to data and transformations, computer code contains comments
Comments are ignored by the computer processing your code
They are intended to help future programmers understand the code, including
future you
Python includes two types of comments

In []:

In []:

I'm a single-line comment (starting with the '#' character)

"""

I'm a multi-line comment,

also called a docstring,

enclosed in triple quotes

"""

Numbers and lettersNumbers and letters

The "atoms" of the data we'll work with will usually be numbers and text
(strings)
Numbers come in two types: the int and float

Strings are represented by the str type

intss

The int type represents integers, i.e. counting numbers

A surprisingly large number of problems boil down to
counting
Computers are very good at discrete math

In []:

In []:

the number 5

5

negative numbers work as you'd expect

-25

floatss

The float represents a decimal or "�oating point"

number
These are more common in scienti�c computing
Continuous math is harder for computers

In []:

In []:

a floating point number

3.1416

a floating point number in scientific notation

1e-5

strss

The str represents a chunk of text, or string

String data are always enclosed by quotes
This distinguishes them from other "words" in the
code

In []:

In []:

strings be enclosed with double quotes

"banana"

or single quotes

'bananarama'

In []:

In []:

Note that when Python evaluated the multi-line string, it saw the newline as a
special character, \n (we'll talk more about these special characters later).

strings can contain multiple words and punctuation

"Hi Class, I'm a string with multiple words!"

you can use triple quotes to define multi-line strings

"""I am an

example of a multi-line

string"""

TransformationsTransformations

Transformations come in three major
�avors

Operators
Functions
Methods

Each transformation has several key properties
It takes some input data, called the
argument(s)
It returns some output data

The returned data can be futher transformed

OperatorsOperators

Operators are usually represented by symbols
(Sometimes short words)

An operator's arguments are arranged around the
symbol
Some of these will be familiar to you...

In []:

In []:

the addition operator takes two numbers as input and returns their sum

1 + 2

the multiplication operators takes two numbers as input and returns their prod

uct

3.1416 * 3.1416

Other mathematical operatorsOther mathematical operators

In []:

In []:

In []:

In []:

exponentiation

3 ** 3

division

5 / 2

floor division

5 // 2

modulus (remainder division)

5 % 2

operators on stringsoperators on strings

The behavior of an operator depends on the type of its input

data
What happens if we try to "add" two string?

In []:

+ concatenates a pair of

strings

"banana" + "rama"

Not every combination works
We can't "add" a number and a string, even if the string looks like a
number

In []:

In []:

"five" + 5

"5" + 5

Aside: Operators

Operators aren't "smart"
They rely on their input data to tell them what to do
We'll learn more about this when we discuss object-oriented
programming

We can multiply a string by a
number
Try to guess what the result will be!

In []:

In []:

2 * "banana"

100 * "A"

functionsfunctions

A function is identi�ed by a name
The function is called by adding () after the name

The function's arguments are provided ("passed") inside the
()s

Anatomy of a function with one argument:

function_name(argument)

Anatomy of a function with multiple (3) arguments:

function_name(arg1, arg2, arg3)

Any Python code has access to a small number of "built-in"
functions
Some of them perform very intuitive functions on data

In []:

In []:

In []:

abs() returns the absolute value of its input

abs(-5.125)

min returns the smallest of its inputs

min(4, 2, -1, 7)

max returns the largest

max(4, 2, -1, 7)

print()

print() is a very important function

It writes its arguments, usually strings, to the screen
Key Point: This is how we monitor the state of a Python
script

Jupyter shows us return values as Out[] blocks

In scripted code, only the computer sees these
print() makes data human-readable

In []:

print() does not return any

data

print("I am an\nexample of a multi-line\nstring")

functions for converting data typesfunctions for converting data types

In []:

In []:

In []:

In []:

str() returns its input as a string

str(3.1416)

int() returns its input as an int

int("5")

int(3.1416)

float() returns its input as a float

float(3)

Read the docs!Read the docs!

You can learn more about Python's built-in functions here:

We'll encounter others moving forward.
We'll also learn how to import additional functions for special
tasks.

https://docs.python.org/3/library/functions.html
(https://docs.python.org/3/library/functions.html)

https://docs.python.org/3/library/functions.html

MethodsMethods

Methods are functions that belong to data of a certain type.

They tend to perform functions that are speci�cally relevant to that
data.
Methods can be identi�ed by their . (dot) syntax.

Anatomy of a method call:

DATA.method_name()

DATA above behaves like an argument to a non-method function:

function_name(DATA)

Methods can take extra arguments: DATA.method_name(arg1, arg2, arg3)

String methodsString methods

Strings have lots of methods useful for text
manipulation
Let's look at some to make this more concrete

In []:

In []:

.upper() is a string method that returns an upper-case version of the string

"bananarama".upper()

.replace(X, Y) returns a version of the string with Xs replaced by Ys

"bananarama".replace("a", "o")

Read the docs!Read the docs!

Python data types (e.g. str) have associated docs:

These describe all of that type's special methods (among other things).
Methods and functions form a "vocabulary" you'll build as you learn to
program.

https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str
(https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str)

https://docs.python.org/3/library/stdtypes.html#text-sequence-type-str

Key Idea: Key Idea: returned data is dataed data is data

We can act on it
We can use it as an operator
argument
We can use it as a function argument
We can call methods on it

This is intuitive for math
operations
Consider 1 + 2 + 3

1 + 2 returns 3

then 3 + 3 returns 6

In []:

Python follows an expanded "order of
operations"

The math part will match your intuition

In []:

1 + 2 + 3

1 + 2 * 3

But this key idea is not speci�c to
numbers/math

In []:

In []:

"ba" + "na" + "na"

"ba" + "na" * 2

Nor is this key idea is not speci�c to
operators

In []:

int("3") returns 3

then 3 ** 3 returns

27

In []:

max(-7, -5, -3) returns

-3

then abs(-3) returns 3

int("3") ** 3

abs(max(-7, -5, -3))

It works with method calls as well
The appearance can be less
intuitive

In []:

In []:

Why do the above-two method "chains" produce different �nal
outputs?

"bananarama".upper().replace("A", "O")

"bananarama".replace("A", "O").upper()

VariablesVariables

Variables are structures in programming for storing data
Some store a constant value, but most change their contents as a program
runs
We de�ne (and later update) variables with the = operator

In this context, we read = as "gets" rather than "equals"

In []:

Unlike previous operators, = does not return data (no Out[]

block)

define a variable called "my_number" with the value of 5

my_number = 5

Variables are an extremely important concept in programming
Why? Recall that programming is all about transformations of
data
Almost all data will be stored in variables

Very little data is "hard-coded"
i.e. explicitly written out in the code

Input data is usually read in from �les
Aside from �nal output data, most data will exist only in
variables

i.e. never seen by the user

Variable namingVariable naming

Can't start with a number
Otherwise a mix of letters, numbers, and _ as "spaces" in longer

names
Quotes "/' distinguish strings of text data from variable names

In []:

In []:

In []:

Variable names can be quite short (faster to type, harder to understand)...

a = 5

...or quite long (harder to type, easier to understand)

bst273_instructor_lastname = "Franzosa"

lots of room for personal style

strCamelCaseVariable = "Hungarian Notation"

Key Concept: Acting on a variable means acting on its storedKey Concept: Acting on a variable means acting on its stored

datadata

In []:

In []:

In []:

In []:

define some variables

number = 5

text = "Hello"

number + number

text + text

text * number

Rede�ning a variable will change the results of transformations we apply to
it

In []:

In []:

text = "Monkey"

text * number

number = 3

text * number

This holds for functions and methods as
well

In []:

In []:

text.upper()

text.upper().replace("E", str(number))

Key Concept: Variables can capture returned valuesKey Concept: Variables can capture returned values

In []:

In []:

In []:

In []:

answer = 5 + 5

print(answer)

full_name = "Eric" + " " + "Franzosa"

print(full_name)

Key Concept: Updating variablesKey Concept: Updating variables

In Python, numbers and strings are immutable
I.e. transforming number and string input data doesn't change the original
data
Rather, new output data is returned

In []:

In []:

Update a variable by rede�ning it (using the =

operator)

In []:

number = 5

number + 1

print(number)

number = 5

number = number + 1

print(number)

Aside: Order of execution

Code tends to run from top to bottom
This is especially true with a Python script
This means we get into trouble if we try to use a variable before de�ning
it

In []:

Things get a little weird in Jupyter Notebooks since we can execute code in any
order we like
Why does the following work?

In []:

print(cool_variable ** 2)

cool_variable = 7

print(number ** 2)

number = 5

Aside: Coding Style

Some aspects of coding are rigid
i.e. Things will break if you don't do them the single correct
way

Others are �exible
e.g. white space around arguments
I prefer the extra space for readability

In []:

In []:

In []:

In []:

operator without white space

1+2

operator with white space (padding)

1 + 2

function call without white space

min(1,2,3,4)

function call with white space (padding)

min(1, 2, 3, 4)

Practice: Practice: sums (easy)s (easy)

In []:

In []:

The sum of the numbers from 1 to N is equal to N * (N + 1) /
2

In []:

(1) write code to sum the numbers 3 through 7 using the "+" operator

(2) write code to sum the numbers 3 through 7 using a single function call

(3) write code to use the formula above to compute the sum of the numbers 1 th

rough 100

Practice: Practice: string manipulation (medium)ing manipulation (medium)

In []:

In []:

In []:

In []:

(0) Don't forget to execute this cell to define these variables.

sa = "ba"

sb = "na"

(1) Return the string "banana" by transforming <sa> and <sb> above.

(2) Reuse your code in (1) to return the string "bonono" in by redefining <sa>

and <sb> above.

(3) Return the string "banana" by adding two method calls to the string below.

"beNeNe"

Practice: Round things (medium)Practice: Round things (medium)

round(X, Y) is a built-in function

It returns the input number X rounded to Y (an int) decimal

places

In []:

In []:

In []:

In []:

In []:

(0) Don't forget to execute this cell to define <pi>

pi = "3.1416"

(1) Without typing any digits, convert (update) <pi> to hold a decimal number.

(2) Using the round() function, update <pi> to be rounded to TWO decimal plac

es.

(3) Tau is a constant equal to two times pi. Define a <tau> variable below.

(4) Use <tau> to compute the circumference of a circle with radius r = 2.

r = 2

area = 999

print(area)

Practice: Advanced updates (hard)Practice: Advanced updates (hard)

In []:

In []:

Consider a sequence S(1), S(2), S(3), ... , S(n) where S(1) and S(2) are known and
S(n) = S(n-1) + S(n-2)

For example, 1, 1, 2, 3, 5, 8, etc.
For any S(1) and S(2), the ratio of S(n+1) to S(n) always approaches the golden
ratio ~ 1.613

In []:

In []:

(0) Don't forget to execute this cell to define these variables.

S1 = 2

S2 = 3

(1) Write code to use the variable <S3> to exchange the values of <S1> and <S2

>.

S3 = 999

print(S1, S2)

(2) Add a print statement below to show that S3 / S2 approaches 1.613 as this

block is executed repeatedly.

S3 = S1 + S2

S1 = S2

S2 = S3

(3) Redefine S1 and S2 above, then re-assess if the claim in (2) holds.

