
Lecture 03: Lists and iterationLecture 03: Lists and iteration
Eric Franzosa, Ph.D.

franzosa@hsph.harvard.edu

OutlineOutline
Homework overview
L02 review
Intro to collections (the list)

Intro to iteration (the for loop)

ReviewReview
Numbers (ints and floats) and strings are immutable

They may be used as input to a transformation, but are unchanged by it
Such transformations return NEW data

Data are transformed with operators, functions, and methods
Typically taking one or more pieces of input data (arguments)
Typically returning one or more pieces of output data
Returned data can be directly acted upon

In []: # a chain of transformations
print(2 * "banana".replace("a", "o"))

ReviewReview
Variables are "buckets" for storing data

Hard-coded data, data read from �les, or outputs from transformations
Variables are de�ned or updated with the = operator

Acting on a variable is acting on its stored data

Number and string data in a variable aren't changed under transformation
Must explicitly update/overwrite the variable

Canvas pollCanvas poll
What will the following two code blocks print to the screen?

block 1
var1 = 5
var1 * 2
print(var1 + 2)

block 2
var2 = 5
var2 = var2 * 2
print(var2 + 2)

The The list
In []: # example of a Python list

[23, "Bob", -5, 3.1416, "popsicle"]

The list is our �rst example of a collection data type

Can store multiple pieces of data (items)
Enclosed by []s

Data can be of heterogeneous types
Items have a natural order by position (1st, 2nd, 3rd, etc.)

Critical for organizing multiple pieces of "atomic" data
E.g. a vector of float measurements over time

E.g. lines of text (strs) from a document

We can store list data in a variable (just like any other data)

In []: my_list = [5, 3, 1, 2, 4]

And we can act on it (through the variable) with built-in functions

In []: # len() returns the number of items in the list
len(my_list)

In []: # sorted() returns a sorted copy of the list
sorted(my_list)

In []: # sum() will return the sum of the list, if all entries are numbers
sum(my_list)

Like other data types, lists have associated methods

Key concept: But unlike numbers and strings, lists are mutable
Their methods can change the data in the list

In []: # an empty list
my_list = []

In []: # .append() adds an item to the end of a list
my_list.append("Apple")

In []: print(my_list)

In []: my_list.append("Banana")
my_list.append("Cantaloupe")
print(my_list)

List methods that change the list in place may not return anything
Hence we use print() to inspect the transformed list

In []: my_list = ["Apple", "Banana", "Cantaloupe"]

In []: # .reverse() reverses the elements of the list in place
my_list.reverse()
print(my_list)

In []: # .sort() sorts the list in-place
my_list.sort()
print(my_list)

list.pop()
Removes the last item from the list
It also returns that item for us to work with

In []: my_list.pop()

In []: print(my_list)

The index operator, The index operator, []
The index operator allows us to access or set speci�c entries in a list
We access the entries based on their position in the list

Key Concept: Python starts counting positions from 0 not 1!Key Concept: Python starts counting positions from 0 not 1!
This is more the rule than the exception in computer programming

R and MATLAB are exceptions
Counting from 1 (and being "off-by-one") is among the most common programming
mistakes

In []: names = ["Alex", "Brian", "Chris", "David", "Eric"]

In []: # the first element, index 0
names[0]

In []: # the second element, index 1
names[1]

In []: # we can index from the end using negative numbers
names[-1]

Indexing returns an element of a list
We can immediately act on the returned value

In []: names[-1] * 5

In []: "Am" + names[-1].lower() + "a"

Indexing can be used with assignment (=) to change existing list values

In []: names[1] = "BETHANY"
names[3] = "DENISE"
print(names)

Trying to access or change a position that doesn't exist will raise an error

In []: # an "off-by-one" error: we forgot to start counting from 0
names[5].upper()

The slice operator, The slice operator, [:]
Returns a range of values from a list (a "slice") as a new list
The syntax is DATA[start:end]
DATA[end] is NOT included in the slice

It's where we stop, not the last item we add

In []: primes = [2, 3, 5, 11, 13, 17, 23]
primes[1:4]

In []: primes[-3:-1]

start and end are optional

In []: # if not supplied, <start> defaults to 0
primes[:5]

In []: # while <end> defaults to len(list)
primes[2:]

In []: # combining them slices the full list (makes a copy)
primes[:]

Indexing and slicing works on any "ordered" data
E.g. strings (but not numbers)

In []: "Eric Franzosa"[0]

In []: "Eric Franzosa"[0:4]

In []: "Eric Franzosa"[5:]

the the for loop loop
Syntax for repeating actions without repeating code

E.g. applying the same transformation to each item in a collection
for X in Y:
 # transformations of X
 X = f(X)
 X = g(X)
 print(X)

Y is an iterable piece of data (e.g. a list)

The "block" of indented lines de�ne the loop body
We will execute the code in the loop body for each item in Y
X is a variable that holds the item we are currently working with

In []: # ignore this for one moment
from time import sleep

In []: for x in [0, 1, 2, 3, 4, 5]:
 #sleep(1)
 x2 = x ** 2
 print(x, "squared is", x2)

In []: # same idea, but the list is in a variable
numbers = [0, 1, 2, 3, 4, 5]
for x in numbers:
 x2 = x ** 2
 print(x, "squared is", x2)

range(X) returns X numbers starting with 0

Hence the last number will be X - 1

In []: # same idea using range()
for x in range(6):
 x2 = x ** 2
 print(x, "squared is", x2)

Let's use a for loop to capitalize some words

In []: words = ["purple", "monkey", "dishwasher"]
note: using <w> for temp variable now
for w in words:
 w = w.upper()
 print(w)

In []: # the data in <words> didn't change
print(words)

To change the elements of the list, we use the range(len()) motif

In []: words = ["purple", "monkey", "dishwasher"]
using <i> as the temp variable, short for "index"
for i in range(len(words)):
 words[i] = words[i].upper()
 print("the word at index", i, "is now", words[i])

In []: # <words> now has updated data
print(words)

Here's another approach to the same problem

In []: words = ["purple", "monkey", "dishwasher"]
words2 = []
for w in words:
 words2.append(w.upper())
words = words2

In []: # we overwrote <words> with the data we want
print(words)

Practice: A Practice: A list of planets of planets
In []: # (0) evaluate this cell to store the planets in <planets> (sorry, Pluto)

planets = ["Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn", "Neptune", "Uranus"
]

In []: # (1) use the index operator to return "Earth"
planets

In []: # (2) use the index operator with a NEGATIVE argument to return "Nepture"
planets

In []: # (3) use the slice operator to pull out the rocky planets as a new list (MVEM)
planets

In []: # (4) use .append() to restore Pluto's status as a planet
planets
print(planets)

In []: # (5) write Python code to identify the first planet in ALPHABETICAL order
abc_first = ""
print(abc_first)

Practice: Practice: for loops loops
In []: # replace <pass> with Python code that will print the first seven POWERS of 2 (i.e. 1,

2, 4, etc.)
for n in [0, 1, 2, 3, 4, 5, 6]:
 pass

In []: # replace <pass> with Python code that SUCCESSIVELY ADD (i.e. sum) add the first seven p
rimes as <my_sum>
primes = [2, 3, 5, 7, 11, 13, 17]
my_sum = 0
for p in primes:
 pass
print(my_sum)

In []: # replace [] with a range(len()) motif to replace each number in <numbers> with its a
bsolute value
numbers = [-5, -3, -1, 0, 1, 3, 5]
for i in []:
 numbers[i] = abs(numbers[i])
print(numbers)

Practice: More Practice: More lists and loops and loops
In []: # (0) evaluate this cell to store the days of the week in <days>

days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"]

In []: # (1) write a <for> loop to extract and store the FIRST LETTER of each day's name in <da
ys2>
days2 = []
your loop here
print(days2)

Y.join(X) will join a list of strings (X) with the string Y as a spacer

The concatenated result is returned as output
X can be the empty string, ""

In []: # (2) use join to concatenate the abbreviations in <days2> as a single string
days2

X.split(Y) will split a string X at each instance of the string Y
A list of substrings of X is returned

X.split(Y) reverses Y.join(X)

In []: # (3) use .split() to redefine <months> as list of the individual months
months = "January February March April May June July August September October November D
ecember"
months = []

In []: # (4) write a <for> loop to replace each month's full name with its 3-letter abbreviatio
n
print(months)

Bonus: Bonus: lists and operators and operators
lists interact with the + and * operators similarly to strings

In []: # evaluate this cell to define the two lists
A = [1, 2, 3]
B = [4, 5, 6]

In []: # (1) "add" the two lists together and inspect the results

In []: # (2) multiply <A> by a small integer and inspect the results

In []: # (3) how does the following transformation differ from what you did in (1)?
A.append(B)

