Lecture 03: Lists and iteration

Eric Franzosa, Ph.D.

franzosa@hsph.harvard.edu

Outline

e Homework overview

e |02 review

* |ntro to collections (the 1ist)
e Introtoiteration (the for loop)

Review

e Numbers (intsand floats) and strings are immutable

= They may be used as input to a transformation, but are unchanged by it
m Such transformations return NEW data

e Data are transformed with operators, functions, and methods
= Typically taking one or more pieces of input data (arguments)
= Typically returning one or more pieces of output data
m Returned data can be directly acted upon

In [1: # a chain of transformations
print(2 * "banana".replace("a", "o"))

Review

e Variables are "buckets" for storing data
» Hard-coded data, data read from files, or outputs from transformations
= Variables are defined or updated with the = operator

e Actingonavariableis acting on its stored data

e Number and string data in a variable aren't changed under transformation
= Must explicitly update/overwrite the variable

Canvas poll

e What will the following two code blocks print to the screen?

block 1
varl = 5
varl * 2
print(varl + 2)

block 2

var2 = 5

var2 = var2 * 2
print(var2 + 2)

The 1ist

In []: # example of a Python Llist
[23, "Bob", -5, 3.1416, "popsicle"]

e The list isour first example of a collection data type
= Can store multiple pieces of data (items)
= Enclosed by []s
= Data can be of heterogeneous types
= |[tems have a natural order by position (1st, 2nd, 3rd, etc.)

e Critical for organizing multiple pieces of "atomic" data
m E.g avector of float measurements over time

= E.g. lines of text (strs) from a document

In

In

In

In

[]1:

[1:

[1:

[1:

e We canstore list data in a variable (just like any other data)

my_list = [5, 3, 1, 2, 4]

e And we can act on it (through the variable) with built-in functions

Llen() returns the number of items in the Llist
len(my_list)

sorted() returns a sorted copy of the Llist
sorted(my_list)

sum() will return the sum of the Llist, if all entries are numbers
sum(my_list)

In

In

In

In

[1:

[1:

[1:

[1:

e |ike other datatypes, 1ists have associated methods
e Key concept: But unlike numbers and strings, lists are mutable
= Their methods can change the data in the list

an empty Llist
my list = []

.append() adds an item to the end of a list
my list.append("Apple")

print(my list)

my_list.append("Banana")
my list.append("Cantaloupe")
print(my_list)

e List methods that change the list in place may not return anything
= Henceweuseprint() toinspectthe transformed list

In []: my_ list = ["Apple", "Banana", "Cantaloupe"]

In []: # .reverse() reverses the elements of the List in place
my_list.reverse()
print(my list)

In []: # .sort() sorts the list in-place
my_list.sort()
print(my_list)

e list.pop()
m Removes the lastitem from the 1ist
m |t alsoreturns that item for us to work with

In []: my list.pop()

In []: print(my_list)

The index operator, []

e The index operator allows us to access or set specific entries in a list
e We access the entries based on their position in the list

Key Concept: Python starts counting positions from O not 1!

e This is more the rule than the exception in computer programming
= R and MATLAB are exceptions
e Counting from 1 (and being "off-by-one") is among the most common programming
mistakes

In

In

In

In

[]:

[1:

[1:

[I:

names = ["Alex", "Brian", "Chris", "David", "Eric"]

the first element, 1index ©
names[0]

the second element, index 1
names[1]

we can 1index from the end using negative numbers
names[-1]

e Indexing returns an element of alist
e We canimmediately act on the returned value

In []: names[-1] * 5

In []: "Am" + names[-1].lower() + "a"

¢ Indexing can be used with assignment (=) to change existing list values

In []: names[1] = "BETHANY"
names[3] = "DENISE"
print(names)

e Tryingto access or change a position that doesn't exist will raise an error

In [1: # an "off-by-one" error: we forgot to start counting from @
names[5].upper()

The slice operator, [:]

e Returns arange of values from a list (a "slice") as a new list
e ThesyntaxisDATA[start:end]

e DATA[end] is NOT included in the slice
» |t's where we stop, not the last item we add

In []: primes = [2, 3, 5, 11, 13, 17, 23]
primes[1:4]

In [1: primes[-3:-1]

e start and end are optional

In [1: # if not supplied, <start> defaults to @
primes[:5]

In []: | # while <end> defaults to Llen(List)
primes[2:]

In []: | # combining them slices the full List (makes a copy)
primes|[:]

¢ |ndexing and slicing works on any "ordered" data
= E.g. strings (but not numbers)

In []: "Eric Franzosa"[@]
In []: "Eric Franzosa"[0:4]

In []1: "Eric Franzosa"[5:]

the for loop

e Syntax for repeating actions without repeating code
= E.g.applying the same transformation to each item in a collection

for X in Y:
transformations of X
X = f(X)
X =g(X)
print(X)

Y is an iterable piece of data (e.g.a 1ist)
The "block" of indented lines define the loop body
We will execute the code in the loop body for each iteminY

X is a variable that holds the item we are currently working with

In []: # ignore this for one moment
from time import sleep

In []: for x in [0, 1, 2, 3, 4, 5]:
#sleep(1)
X2 = X ** 2
print(x, "squared is", x2)

In []: | # same idea, but the list is in a variable
numbers = [0, 1, 2, 3, 4, 5]
for x in numbers:
X2 = x ** 2
print(x, "squared is", x2)

e range(X) returns X numbers starting with O
= Hence the last number will be X - 1

In []: # same idea using range()
for x in range(6):
X2 = x ** 2
print(x, "squared is", x2)

e |et'suse aforloop to capitalize some words

In []: words = ["purple", "monkey", "dishwasher"]
note: using <w> for temp variable now
for w in words:

w = w.upper()
print(w)

In []: | # the data in <words> didn't change
print(words)

e To change the elements of the list, we use the range(len()) motif

In [1: words = ["purple", "monkey", "dishwasher"]
using <i> as the temp variable, short for "index"
for i in range(len(words)):
words[i] = words[i].upper()
print("the word at index", i, "is now", words[i])

In [1: # <words> now has updated data
print(words)

e Here's another approach to the same problem

In []: words = ["purple"”, "monkey", "dishwasher"]
words2 = []
for w in words:
words2.append(w.upper())
words = words2

In []: | # we overwrote <words> with the data we want
print(words)

In

In

In

In

In

In

[1:

[]:

[]:

[]:

[]:

[1:

Practice: A 1ist of planets

(0) evaluate this cell to store the planets in <planets> (sorry, Pluto)
planets = ["Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn", "Neptune", "Uranus"

]

(1) use the index operator to return "Earth"
planets

(2) use the index operator with a NEGATIVE argument to return "Nepture"
planets

(3) use the slice operator to pull out the rocky planets as a new List (MVEM)
planets

(4) use .append() to restore Pluto's status as a planet
planets
print(planets)

(5) write Python code to identify the first planet in ALPHABETICAL order
abc_first = ""
print(abc_first)

Practice: for loops

In []: | # replace <pass> with Python code that will print the first seven POWERS of 2 (i.e. 1,
2, 4, etc.)
for n in [0, 1, 2, 3, 4, 5, 6]:
pass

In []: | # replace <pass> with Python code that SUCCESSIVELY ADD (i.e. sum) add the first seven p
rimes as <my_sum>
primes = [2, 3, 5, 7, 11, 13, 17]
my_sum = 0
for p in primes:
pass
print(my_sum)

In []: # replace [] with a range(len()) motif to replace each number in <numbers> with its a
bsolute value
numbers = [-5, -3, -1, 0, 1, 3, 5]
for i in []:
numbers[i] = abs(numbers[i])
print(numbers)

In []:

In []:

In []:

In []:

Practice: More 1ists and loops

(0) evaluate this cell to store the days of the week in <days>
days = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday"]

(1) write a <for> Loop to extract and store the FIRST LETTER of each day's name in <da
ys2>

days2 = []

your Lloop here

print(days2)

e Y.join(X) willjoinalist of strings (X) with the string Y as a spacer
» The concatenated result is returned as output
m X can be the empty string, " "

(2) use join to concatenate the abbreviations 1in <days2> as a single string
days2

e X.split(Y) willsplitastring X at each instance of the string Y
= A list of substrings of X is returned
= X.split(Y)reversesY.join(X)

(3) use .split() to redefine <months> as Llist of the 1individual months
months = "January February March April May June July August September October November D
ecember"

months = []

In [1: # (4) write a <for> Loop to replace each month's full name with its 3-letter abbreviatio
n
print(months)

In

In

In

In

[1:

[1:

[1:

[1:

Bonus: 1ists and operators

e lists interact with the + and * operators similarly to strings

evaluate this cell to define the two Llists
[1, 2, 3]
B = [4J 5, 6]

>
Il

(1) "add" the two lists together and inspect the results

(2) multiply <A> by a small integer and inspect the results

(3) how does the following transformation differ from what you did in (1)?
A.append(B)

