
Lecture 04: Lecture 04: dicts and more iterations and more iteration

Eric Franzosa, Ph.D.

franzosa@hsph.harvard.edu

OutlineOutline

HW1 reminders
HW2 notes
list and for loop

review
dictionaries

Practice

ReviewReview

The list

A collection type that stores multiple pieces of (potentially

heterogeneous) data
Data (items) are enclosed by []s and separated by ,s

The data are indexed by 1st, 2nd, 3rd, etc. position (a sequence)

In []: my_list = [2, 3.1416, "crusts"]

lists are mutable

Their contents can be changed under
transformation
list methods [e.g. .append()] can act in place

In []:

In []:

my_list.append("cost")

my_list.append(1.99)

print(my_list)

We retrieve or set list positions using the index operator []

Counting starts from 0, not 1, or from the list end using negative
indices

We can slice sections of the list with the slice operator [start:end]

end is not included in the slice

In []:

In []:

In []:

print(my_list[0], my_list[1], my_list[-2])

my_list[-1] = 9.99

print(my_list)

print(my_list[1:-2])

Read the docs!Read the docs!

You can learn more about Python's list type here:

This page is also a good general introduction to the Python docs.
See if you can �nd a way to remove/pop the item from an arbitrary index in a
list!

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists
(https://docs.python.org/3/tutorial/datastructures.html#more-on-lists)

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

the the for loop loop

Syntax for repeating actions without repeating code
E.g. applying the same transformation to each item in a
collection

Y is an iterable piece of data (e.g. a list)

The "block" of indented lines de�ne the loop body
We will execute the code in the loop body for each item in Y

X is a variable that holds the item we are currently working

with

for X in Y:

 # transformations of X

 X = len(X)

 X = 2 * X

 print(X)

In []:

In []:

my_list = [2, 3.1416, "crusts", "cost", 1.99]

iterating over a list in a variable

for x in my_list:

 x2 = 2 * x

 print("in loop:", x, "->", x2)

this <print> is OUTSIDE the loop

print("outside:", my_list)

In []:

In []:

In []:

impractical example

my_list = [2, 3.1416, "crusts", "cost", 1.99]

indices = [0, 1, 2, 3, 4]

iterating over a list by index to update it

for i in indices:

 old_value = my_list[i]

 new_value = 2 * my_list[i]

 my_list[i] = new_value # <- list is updated!

 print(old_value, "->", new_value)

this process CHANGED the list

print(my_list)

range(X) returns X numbers starting with 0

len(list) returns the number of items in the list

Hence, range(len(my_list)) returns the indices of

my_list

In []:

range() is a special type of function called a generator
It's safe to think of it as returning a list of numbers

In reality, it returns one number at a time, speci�cally for use with for

loops

a better approach to indexing

my_list = [2, 3.1416, "crusts", "cost", 1.99]

for i in range(len(my_list)):

 print(my_list[i])

The The dict

In []:

The dict (short for "dictionary") is our next collection data type

Dictionaries store a mapping from a set of keys to corresponding
values
(key, value) pairs are joined by :s, separated by ,s, and enclosed by {}s

Keys must be unique, immutable data (typically strings)

Values can be any kind of data (strings, numbers, lists, other

dicts)

Dictionaries are my person favorite data type: they are super versatile!

example of a Python <dict>

prices = {"Apple":0.49, "Banana":0.49, "Cantaloupe":2.99}

In []: # another way of defining a <dict> that's easier to read

prices = {

 "Apple": 0.49,

 "Banana": 0.49,

 "Cantaloupe": 1.99, # <- "extra" comma avoids error later if we add 4th item

}

print(prices)

Indexing dictionariesIndexing dictionaries

Like lists, we can use the index operator [] to look up or set dictionary

values
Instead of indexing by position, we index using a key as an argument
This returns the corresponding dictionary value for that key

In []:

In []:

prices["Apple"]

looking up a non-existant key raises an error

prices["Tomato"]

We can use the same indexing logic to update or de�ne dictionary

values

In []:

In []:

In []:

raise the price of an apple

prices["Apple"] = 99.99

add a price for another fruit

prices["Durian"] = 3.99

see the updated dictionary

print(prices)

Like all data types, dictionaries have associated helper methods

Like with lists, these methods can alter the dictionary in place and/or return

values

In []:

In []:

In []:

.pop(KEY) removes a key:value pair and returns the value

prices.pop("Banana")

note that we popped by key from the "middle" of the dictionary

print(prices)

.get(X, Y) returns the value associated with key <X> like indexing

...but will return <Y> if key <X> is not defined

prices.get("Elderberries", "price not found!")

Looping over Looping over dictss

By default, a for loop iterates over the keys of the dict

I.e. the key is stored in the loop's temporary variable with each
pass

In []:

In []:

When it matters, the dictionary's order is the order in which keys were
inserted
We don't use this order for indexing, however (unlike with lists)

from time import sleep

prices = {"Apple": 0.49, "Banana":0.49, "Cantaloupe": 1.99, "Durian": 3.99}

note the use of an informative temp variable name, <fruit>

for fruit in prices:

 sleep(1)

 print(fruit)

In []:

In []:

In []:

let's also see the price of the fruit

for fruit in prices:

 sleep(1)

 print(fruit, "->", prices[fruit])

let's double the price of all fruits

for fruit in prices:

 # set new cost as 2 times (looked-up) old cost

 prices[fruit] = 2 * prices[fruit]

the price data were updated in place

print(prices)

Read the docs!Read the docs!

You can learn more about Python's dict type here:

https://docs.python.org/3/library/stdtypes.html#dict
(https://docs.python.org/3/library/stdtypes.html#dict)

https://docs.python.org/3/library/stdtypes.html#dict

Application: Going to the storeApplication: Going to the store

In []:

In []:

In []:

Here's my shopping list, coded as a <dict>

to_buy = {

 "Apple": 2,

 "Banana": 6,

 "Cantaloupe": 1,

}

we'll track my spending here, starting at 0

money_spent = 0

for each fruit on my shopping list...

for fruit in to_buy:

 how_many = to_buy[fruit] # <- look up how many I want

 subtotal = how_many * prices[fruit] # <- current fruit subtotal

 money_spent = money_spent + subtotal # <- update money spent

print(money_spent)

A more realistic example that will
break
Let's try to �x it together

In []:

In []:

to_buy = {

 "Apple": 2,

 "Banana": 6,

 "Grapefruit": 1, # <- item not in prices!

}

money_spent = 0

for fruit in to_buy:

 how_many = to_buy[fruit]

 subtotal = how_many * prices[fruit]

 money_spent = money_spent + subtotal

dict.items() is a handy method for iterating over (key, value)

pairs
Requires using two ,-separated loop variables

In []:

In []:

It's important to see that these versions are equivalent
However, using fewer lines of code is not necessarily
better
Favor clarity over brevity

using .items() saves us a line of code

money_spent = 0

for fruit, how_many in to_buy.items():

 subtotal = how_many * prices.get(fruit, 0)

 money_spent = money_spent + subtotal

print(money_spent)

an even shorter version

money_spent = 0

for fruit, how_many in to_buy.items():

 money_spent = money_spent + how_many * prices.get(fruit, 0)

print(money_spent)

Practice: Practice: for loops (repeated from last time) loops (repeated from last time)

In []:

In []:

In []:

In []:

(1) replace <pass> with Python code that will print the first seven POWERS of

2 (i.e. 1, 2, 4, etc.)

for n in [0, 1, 2, 3, 4, 5, 6]:

 pass

(2) replace <pass> with Python code that SUCCESSIVELY ADDS (i.e. sums) add the

first seven primes as <my_sum>

primes = [2, 3, 5, 7, 11, 13, 17]

my_sum = 0

for p in primes:

 pass

print(my_sum)

(2') [NEW QUESTION!] Replace [] with range() to sum the numbers from 0 to N

How big must N be for the calculation to be non-instantaneous?

my_sum = 0

for n in []:

 my_sum = my_sum + n

print(my_sum)

(3) replace [] with a range(len()) motif to replace each number in <numbers

> with its absolute value

numbers = [-5, -3, -1, 0, 1, 3, 5]

for i in []:

 numbers[i] = abs(numbers[i])

print(numbers)

Practice: Practice: dicts and loops and loops

The following dictionary stores grades for students at another
school

In []:

In []:

In []:

In []:

In []:

(0) don't forget to execute this cell to define <grades>

grades = {

 "Alex": "A",

 "Beth": "A",

 "Carl": "B",

}

print(grades)

(1) Alter the SYNTAX of the code in (0) above to assign "Dina" a grade of "C",

then re-evaluate (0)

(2) Use the index operator to assign "Fred" a grade of "B"

print(grades)

(3) Use the index operator to change Carl's grade to an "A"

print(grades)

(4) Complete/fix the <for> loop to print each student's name and grade on its

own line

for name in grades:

 grade = ""

 print(name)

In []:

In []:

Thought question: Many database systems behave like collections of
dictionaries mapping one attribute onto another.
(7) Why would using �rst (and/or last) names not be a good choice of key in a
university database storing student grades?
(8) What would make a better key?
(9) Based on your answer to (8), what other mapping likely exists in a university's
grade database?

(5) Write a <for> loop above the print() statement to assign each student a g

rade of "A"

print(grades)

(6) Same task as above, but assign each student the first letter of their name

as a grade

print(grades)

Bonus: Counting with Bonus: Counting with dictss

One of the useful features of a dictionary is counting repeated elements in a list
(or other iterable data)
Note that in the �rst example here, we use numbers (ints) as keys to a dict

While less common than string-based keys, ints are also immutable,

so this works just �ne

In []:

In []:

In []:

numbers = [1, 2, 2, 7, 4, 9, 7, 4, 8, 2, 4, 4, 6, 6, 7, 2, 4, 1, 2, 9, 8, 1, 8,

7, 9]

an empty dictionary

counts = {}

for n in numbers:

 # what does this line of code do?

 counts[n] = counts.get(n, 0) + 1

print(counts)

len(dict) returns the number of keys in the dict, i.e. the number of unique

numbers in <numbers>

len(counts)

(1) Challenge: Write python code to count the UNIQUE characters in the followi

ng phrase

phrase = "Challenge: Write python code to count the UNIQUE characters in the fol

lowing phrase"

Bonus: Nesting collections and loopsBonus: Nesting collections and loops

Collections (like lists and dicts) can store other collections as
items/values

In []:

In []:

In []:

a dict containing small lists as values

nested = {

 "A": [1, 2, 3],

 "B": [4, 5, 6],

 "C": [7, 8, 9],

}

explore nested data with nested <for> loops

for key, numbers in nested.items():

 for n in numbers:

 print(key, n)

(1) Challenge: Write a nested <for> loop to decrease all list values in <neste

d> by 1

for example, after your code runs, "A" should map to [0, 1, 2]

print(nested)

