
L05: ConditionalsL05: Conditionals

Eric Franzosa, Ph.D.

franzosa@hsph.harvard.edu

OutlineOutline

HW2 reminder
Boolean values
Comparative and logical
operators
Conditionals: if/elif/else

The while loop and loop control

Practice

True and and False

There are only two Boolean values: True and False

Used by computers to track objectively true and false
statements
Sometimes represented as 1 and 0

"The blue whale is the largest
mammal"

Objectively true

"Texas is the largest of the 50 United
States"

Objectively false

"The black bear is the best type of bear"
Opinion - Neither objectively true nor
false.

Comparative operatorsComparative operators

Comparative operators return True/False values:

== : test of equality

!= : test of inequality ("not equals")

< and > : less-than / greater-than

<= and >= : less-than-or-equal-to / greater-than-or-equal-

to

In []:

In []:

In []:

== returns True if the surrounding values are equal...

5 == 5

...and False otherwise

5 == -5

!= returns the opposite of ==

5 != -5

Be careful not to confuse = and ==.

= is the assignment operator: puts data into a variable.

== is the test of equality: evaluates if two pieces of data are

equal.
Very common programming mix-up.

Note that neither = nor == are direct analogs of = as it's used in math.

= in math is an assertion: x = 5 implies x is 5.
== poses a question: x == 5 asks "Is x equal to 5?" (it might not

be).
= is an action: x = 5 sets the value of x to 5.

Aside: Checking divisibility with Aside: Checking divisibility with == with with %

% is the modulus operator.

returns the remainder when we divide x by y.

x % y is read "x mod y" (similar to how x * y is read "x times

y").

In []:

If x mod y is 0, then x divides evenly into
y.
For example, if x mod 2 is 0, then x is
even.
We will use this a lot today.

In []:

5 % 2

10 % 2 == 0

Comparative operators: Comparative operators: <, , >, , <=, , >=

In []:

In []:

In []:

2 < 3

3 < 3

3 <= 3

Comparative operators work on strings as well (where they indicate lexical order). It can
be helpful to think of x < y as meaning "does x come before y in sorted list?"

In []:

In []:

In []:

"a" < "b"

"b" < "a"

"a" > "A"

Comparative operators: Comparative operators: in

in is a special operator in Python that checks for "membership".

In []:

In []:

In []:

is the item present in a list?

1 in [1, 2, 3, 4, 5]

is the item a key of a dictionary?

"apple" in {"apple":0.99, "banana":0.59}

is the item (a string) a substring of a longer string?

"i" in "Team"

Logical operators: Logical operators: and and and or

The operators and and or allow us to ask more sophisticated logical questions.

In []:

In []:

In []:

<and> returns True if both flanking statements are True

1 < 10 and 10 < 1

1 < 10 and 10 > 1

<or> returns True if at least one flanking statement is True

1 < 10 or 1 > 10

Logical operators: Logical operators: not

not negates (�ips) the truth value that follows it (the logical equivalent of multiplying by

-1).

In []:

In []:

In []:

In []:

not True

not 10 < 1

not 1 < 10 and 10 < 1

use parentheses to make the order of execution more explicit

not (1 < 10 and 10 < 1)

Expanded operator precedenceExpanded operator precedence

Higher rows have higher precedence (evaluate �rst)
()

[] (indexing and slicing), f() (function calls)

**

*, /, //, %

+, -

in, <, <=, >, >=, !=, ==

not

and

or

Operators on the same row are tied and evaluate left to
right
When in doubt, add ()s

Conditionals: the Conditionals: the if statement statement

Like the for loop, the if statement is another common "structure" for building

programs. An if block will only execute if a given condition is True.

In []:

In []:

x = 4

if x % 2 == 0:

 print(x, "is even")

TEST = "Eric" in "America" # <- Boolean value stored in all-caps variable

if TEST:

 print("I found a substring!")

In []: IS_COLD = True

GOING_OUTSIDE = True

if IS_COLD and GOING_OUTSIDE:

 print("Put on a jacket!")

Conditionals: the Conditionals: the if//else statement statement

The if/else statement is slightly fancier: it executes the if block if a given condition is

True, otherwise it executes the else block.

In []: x = 4

if x % 2 == 0:

 print(x, "is even")

else:

 print(x, "is odd")

if/else statements are fundamental to decision making in programs (and

life).

In []: traffic_signal = "Red"

if traffic_signal == "Green":

 print("Let's go!")

else:

 print("Stop!")

Conditionals: Conditionals: the the if//elif//else statement statement

The if/elif/else statement is the most �exible: it allows us to check a variety of

possible conditions. Only the block associated with the �rst True condition will be

executed. Here, else is often used to catch an unexpected option.

In []: traffic_signal = "Yellow"

if traffic_signal == "Green":

 print("Let's go!")

elif traffic_signal == "Yellow":

 print("Prepare to stop.")

elif traffic_signal == "Red":

 print("Stop!")

else:

 print("Unknown signal")

if/elif differs from a pair of if statements:

In []:

In []:

x = 5

if x > 3:

 print(x, "is greater than 3")

elif x > 1:

 print(x, "is greater than 1")

if x > 3:

 print(x, "is greater than 3")

if x > 1:

 print(x, "is greater than 1")

Conditionals in loopsConditionals in loops

Conditionals frequently arise within loops. There, they allow us to perform different
actions depending on the current value of the loop variable. Note the second level of
indentation for the if/else blocks.

In []: for n in [1, 2, 3, 4, 5]:

 if n % 2 == 0:

 print(n, "is even")

 else:

 print(n, "is odd")

Conditionals in loops: Fizz BuzzConditionals in loops: Fizz Buzz

"Fizz Buzz" is a children's game in which players count in a circle.
When it's time to say a number that is divisible by 3, you say "Fizz" instead of the
number.
When it's time to say a number that is divisible by 5, you say "Buzz".
If the number is divisible by both 3 and 5, you say "Fizz Buzz".

In []: for n in range(1, 35): # <- range(X, Y) starts from X and stops at Y

 say = n

 if n % 3 == 0 and n % 5 == 0:

 say = "Fizz Buzz"

 elif n % 3 == 0:

 say = "Fizz"

 elif n % 5 == 0:

 say = "Buzz"

 print(say, end=", ") # <- terminate with ", " rather than "\n" (newline)

Conditionals in loops: Fizz BuzzConditionals in loops: Fizz Buzz

The order of the tests in our if/elif/else statement different from my description of

the game. What happens if I use the original order?

In []: for n in range(1, 35):

 say = n

 if n % 3 == 0:

 say = "Fizz"

 elif n % 5 == 0:

 say = "Buzz"

 elif n % 3 == 0 and n % 5 == 0:

 say = "Fizz Buzz"

 print(say, end=", ")

Structure conditionals from more to less
speci�c.

Conditionals in loops: Fizz BuzzConditionals in loops: Fizz Buzz

We can also approach this problem with nested conditionals:

In []: for i in range(1, 35):

 say = i

 if i % 3 == 0:

 if i % 5 == 0:

 say = "Fizz Buzz"

 else:

 say = "Fizz"

 elif i % 5 == 0:

 say = "Buzz"

 print(say, end=", ")

Deeply nested code is harder for PEOPLE to read. Avoid when possible.

Conditionals in loops: Max PriceConditionals in loops: Max Price

Find the most expensive fruit in this dictionary of prices:

In []:

In []:

prices = {

 "apple": 0.99,

 "banana": 0.59,

 "cantaloupe": 2.99,

 "grape": 0.05,

}

a common "motif" for finding a max

max_price = 0

for fruit in prices:

 my_price = prices[fruit]

 if my_price > max_price:

 max_price = my_price

print(max_price)

break and and continue change loop behavior change loop behavior

Executing break exits the loop immediately.

Executing continue moves immediately to the next cycle of the

loop.

In []:

In []:

In []:

for n in range(10):

 print(n, end=" ")

for n in range(10):

 if n > 5:

 break

 print(n, end=" ")

for n in range(10):

 if n < 5:

 continue

 print(n, end=" ")

The The while loop loop

The while continues looping as long as a condition is True.

In []:

If we comment out the x += 1 line, then x < 10 will ALWAYS be True, and
we will loop forever.
This is an example of an "in�nite loop".
If your code is "hanging" (running for a long time without doing anything), check
for bad while loops.

x = 0

while x < 10:

 print(x, end=" ")

 x += 1

Practice: Logical OperatorsPractice: Logical Operators

In []:

In []:

In []:

In []:

In []:

(1) write a logical statement involving numbers that returns True

(2) write a logical statement involving strings that returns False

(3) write a logical statement involving a collection

(4) write a logical statement with two <ands> and one <or> that returns True

(5) write a logical statement with an <and>, <or>, and <not> that returns Fals

e

Practice: ConditionalsPractice: Conditionals

In []:

In []:

time = 0

location = "I don't know"

(1) write an <if/elif/else> block here that determines where you are today bas

ed on the hour (out of 24)

print(location)

(2) expand the block below to offer guesses for the other three combinations o

f the two TESTS

CAN_FLY = True

BIGGER_THAN_BREADBOX = True

if CAN_FLY and BIGGER_THAN_BREADBOX:

 print("could be an albatross?")

Practice: Conditionals in loopsPractice: Conditionals in loops

In []:

In []:

(1) modify the loop to find the "earliest" character in the given string (base

d on sorting order)

text = "alphAbet"

earliest = "z" # <- initialized as the last possible character, lower-case z

for char in text:

 continue

print(earliest)

this code uses the <is None> motif to initialize <earliest>

this way we don't have to think about how to initialize <earliest> in a logica

l way

(2) What happens if you evaluate this without modifying it?

(3) What if you copy-paste your loop code from above and then evaluate?

text = "alphAbet"

earliest = None

for char in text:

 if earliest is None:

 earliest = char

 continue

print(earliest)

In []:

In []:

In []:

(4) modify this code to print the fruit with the max price, rather than the pr

ice itself

prices = {

 "apple": 0.99,

 "banana": 0.59,

 "cantaloupe": 2.99,

 "grape": 0.05,

}

max_price = 0

for fruit in prices:

 my_price = prices[fruit]

 if my_price > max_price:

 max_price = my_price

print(max_price)

(5) Modify the "Fizz Buzz" definition below to produce the same output using a

<while> loop

for n in range(1, 35):

 say = n

 if n % 3 == 0:

 say = "Fizz"

 elif n % 5 == 0:

 say = "Buzz"

 elif n % 3 == 0 and n % 5 == 0:

 say = "Fizz Buzz"

 print(say, end=", ")

(6) CHALLENGE: Implement the "Fizz Buzz" game using three <if> statements with

in a <for> loop

HINT: You will "build" your saying rather than choosing it

Bonus: Bonus: the the ternary operator operator

Simple if/else statements (i.e. those with one "line" per block) can be expressed with

the ternary operator A if B else C. This operator returns A if B is True, otherwise it

returns C.

In []: pattern = "fun"

text = "fundamentals"

answer = "found" if (pattern in text) else "missing"

print(answer)

