
L08: Review
and Practice

Eric Franzosa (franzosa@hsph.harvard.edu)

http://franzosa.net/bst273

http://franzosa.net/bst273
http://franzosa.net/bst273

Overview

• Last Monday’s lecture bumped to today
◦ Will skip one of the later “special topics” (modules) lectures to compensate

• HW4 posted (due Friday 12/6)

• Draft Final Project specifications this Weds (12/4)
◦ To help with default vs. custom Final Project choice

◦ Officially starts next Monday (12/9)

• Comments on patterns from HW3

• Comments on Jupyter vs. command-line (scripted) Python

• Command-line navigation overview

• Live coding of the scheduling problem from HW1

• Feedback on live coding

12/2/2019 2

Comments on Patterns
from HW3

General objectives for programming

• (1) Arrive at the correct answer in a reasonable amount of time

◦ Including the time it takes to write the code!

• (2) Write code that is easy for someone to understand in the future

◦ Including future you!

• (3) Write code in a way that is less likely to introduce errors, now or later

◦ Practice defensive coding

• One of the easiest ways to achieve 2 and 3 is to avoid writing code that is
repetitive and/or hard to read (e.g. deeply nested code).

12/2/2019 4

Avoid writing repetitive code: vowel counting

12/2/2019 5

def count_vowels(text, lower=False):
 ret = {}
 for char in text:
 if char == “A”:
 ret[“A”] = ret.get(“A”) + 1
 elif char == “E”:
 ret[“E”] = ret.get(“E”) + 1
 ...
 elif lower and char == “a”:
 ret[“A”] = ret.get(“A”) + 1
 elif lower and char == “e”:
 ret[“E”] = ret.get(“E”) + 1
 ...
 return ret

vowels1.py

• This would return the right answer in
a reasonable amount of time!

• Lots of repetition

• Not fun to read or type

• Note: I recoded this myself, it isn’t
based on any one person’s solution

Avoid writing repetitive code: vowel counting

12/2/2019 6

def count_vowels(text, lower=False):
 ret = {}
 for char in text:
 if char == “A”:
 ret[“A”] = ret.get(“A”) + 1
 elif char == “E”:
 ret[“E”] = ret.get(“E”) + 1
 ...
 elif lower and char == “a”:
 ret[“A”] = ret.get(“A”) + 1
 elif lower and char == “e”:
 ret[“E”] = ret.get(“A”) + 1
 ...
 return ret

vowels1b.py

• Very easy to make a copy-and-paste
mistake in one of the blocks that is
hard to catch

Avoid writing repetitive code: vowel counting

12/2/2019 7

def count_vowels(text, lower=False):
 ret = {}
 for char in text:
 if char == “Y”:
 ret[“Y”] = ret.get(“Y”) + 1
 elif char == “A”:
 ret[“A”] = ret.get(“A”) + 1
 elif char == “E”:
 ret[“E”] = ret.get(“E”) + 1
 ...
 elif lower and char == “a”:
 ret[“A”] = ret.get(“A”) + 1
 elif lower and char == “e”:
 ret[“E”] = ret.get(“E”) + 1
 ...
 return ret

vowels1c.py

• Easy to introduce errors later

• Ex: Updating to count “Y” as a vowel
◦ We remembered to update the

uppercase condition…

◦ …but not the lowercase condition

Avoid writing repetitive code: vowel counting

12/2/2019 8

def count_vowels(text, lower=False):
 ret = {}
 if lower:
 text = text.upper()
 for char in text:
 if char in “AEIOU”:
 ret[char] = ret.get(char,0) + 1
 return ret

vowels2.py

• If we’re treating upper and
lowercase the same, just uppercase
the whole text before counting

• Replace many small tests with one
larger sophisticated test

Avoid writing deeply nested code (when possible)

12/2/2019 9

def prime_range(n):
 primes = []
 for n2 in range(2, n):
 # check if n2 is prime
 IS_PRIME = True
 for divisor in range(2, n2):
 if n2 % divisor == 0:
 IS_PRIME = False
 if IS_PRIME:
 primes.append(n2)
 return primes

primes1.py

• This is an alternate prime range
function (more nested, harder to
read, easier to break)

Avoid writing deeply nested code (when possible)

12/2/2019 10

def check_prime(n):
 IS_PRIME = True
 for divisor in range(2, n):
 if n % divisor == 0:
 IS_PRIME = False
 return IS_PRIME

def prime_range(n):
 primes = []
 for n2 in range(2, n):
 # check if n2 is prime
 if check_prime(n2):
 primes.append(n2)
 return primes

primes2.py

• The way that we actually composed
this code is simpler: take a repeated
action out of prime_range() and
implement it as it’s own function,
check_prime().

• Once we are confident that
check_prime() is working, any
errors we find must be due to
problems with prime_range().

Repetitive and deeply-nested code: weird sums

12/2/2019 11

def weird_sum(numbers):
 ret = 0
 for n in numbers:
 if n < 0:
 n = -1 * n
 if n % 2 == 0:
 n = n // 2
 elif n % 2 == 1:
 n = 2 * 2
 else:
 if n % 2 == 0:
 n = n // 2
 elif n % 2 == 1:
 n = 2 * 2
 ret = ret + n
 return ret

weirdsum1.py

• Rules, given some numbers:
◦ Sum all numbers

◦ If number < 0, add its absolute value

◦ If number is even, add half its value

◦ If number is odd, add twice its value

• This would return the right answer in
a reasonable amount of time!

• Hard to read, especially from the
many levels of nesting

• Note: I recoded this myself, it isn’t
based on any one person’s solution

Repetitive and deeply-nested code: weird sums

12/2/2019 12

def weird_sum(numbers):
 ret = 0
 for n in numbers:
 if n < 0:
 n = -1 * n
 if n % 2 == 0:
 n = n // 2
 elif n % 2 == 1:
 n = 2 * 2
 ret = ret + n
 return ret

weirdsum2.py

• No need for deep nesting: can apply
the transformations serially

Jupyter vs.
Command-line Python

Jupyter vs. command-line Python

• Jupyter is good at…
◦ Experimenting with small chunks of code

◦ Interactive analysis

◦ HW1, HW2, HW3

• Jupyter is not great at…
◦ Organizing and tracking state

◦ Running as an automated program

◦ Interacting with command-line (user) options

• Command-line Python is good at…
◦ Behaving like a traditional computer program

◦ Operating as part of an analysis workflow

◦ HW4, Final Project

12/2/2019 14

Command-line Python runs in one go, top-to-bottom

12/2/2019 15

from math import sqrt

x = 16

print(sqrt(x))

def squared(x):
 return x ** 2

x = 2 * x
print(squared(x))

x = 5

$ python code.py

code.py (open in Atom) (a terminal)

4
100

1

2

3

4

5

6

Command-line Python stops at first error

12/2/2019 16

from math import sqrt

x = 16

print(sqrt(y))

def squared(x):
 return x ** 2

x = 2 * x
print(squared(x))

x = 5

$ python code.py

code.py (open in Atom) (a terminal)

NameError: name 'y' is not defined

1

2

3

Jupyter runs as we please

12/2/2019 17

from math import sqrt

x = 16

print(sqrt(x))

def squared(x):
 return x ** 2

x = 2 * x
print(squared(x))

x = 5

code.ipynb (Jupyter input cells) Jupyter output

1

2 NameError: name ‘squared' is not defined

Jupyter runs as we please

12/2/2019 18

from math import sqrt

x = 16

print(sqrt(x))

def squared(x):
 return x ** 2

x = 2 * x
print(squared(x))

x = 5

code.ipynb (Jupyter input cells) Jupyter output

1

2 1024

3

4

Jupyter runs as we please

12/2/2019 19

from math import sqrt

x = 16

print(sqrt(x))

def squared(x):
 return x ** 2

x = 2 * x
print(squared(x))

x = 5

code.ipynb (Jupyter input cells) Jupyter output

1

2 1024

3

4

5

6

7 2.2360679775

Refresher on running
Python from the
command line

Refresher on
navigating the
command line

Refresher on command-line navigation

• All of this is explained in much more detail in Module 0
◦ With practice, if interested

• Here’s the minimum you’ll want going forward

12/2/2019 22

Command-line task… Windows MacOS / Linux

View current location/folder cd pwd

View current contents dir ls

Move (down) into subfolder cd name cd name

Move (up) into parent folder cd .. cd ..

Transition to
live-coding exercise

Feedback on
live-coding exercise?

