
L09: Regular ExpressionsL09: Regular Expressions

Eric Franzosa, PhD

franzosa@hsph.harvard.edu

OutlineOutline

Regular expression (RE)
syntax
Python's re module

Practice with RegexOne

Pattern matchingPattern matching

Pattern matching is an important class of computing problem
Given a pattern P, does it occur in a dataset D, and if so,

where?
Often occurs in the context of text analysis

Finding a word on a website
Using �nd-and-replace in a document
"Googling" a query against the known Internet

We've seen some limited uses of this in Python already (the <pattern> in

<text> motif)

In []:

In []:

"fun" in "fundamental"

"i" in "team"

String matchingString matching

But what about a more general question, e.g. is my text an email
address?

In []:

In []:

In []:

In []:

def check_if_email(text):

 return "@" in text

check_if_email("franzosa@hsph.harvard.edu")

check_if_email("follow me on Twitter @franzosa")

check_if_email("let's meet @1pm today")

Regular expressionsRegular expressions

A syntax for describing �exible patterns in strings
Can be used to...

Test if a pattern occurs (like <pattern> in <text>)

Extract instances of patterns (when they occur)
Replace patterns with other text

Available in many places where complex pattern matching is
useful
Also called "regexps", "regexes", or "REs" as shorthand

In []: # regular expression methods/data re bundled in Python's <re> module

import re

Support codeSupport code

We'll use this function to explore string pattern matching in Python
It takes a pattern and text as arguments and uses re.search() to compare

them
If the pattern is found, it is highlighted with ^ characters

(We'll talk more about this code later)

In []: def refind(pattern, text):

 print(text)

 match = re.search(pattern, text)

 if match is None:

 print("<NO MATCH>")

 else:

 start, end = match.start(), match.end()

 print(" " * start + "^" * (end - start))

 return None

Raw stringsRaw strings

Python interprets some character sequences non-literally
e.g. \t is seen as the tab character and \n as a newline

We can change this behavior by adding r in front of the opening quote that

de�nes a string
This tells Python to treat the string as a "raw string"

In []:

In []:

I will use raw strings when de�ning patterns. Most of the time it doesn't matter
(and I will probably forget at least once), but it's a good safety feature.

print("Hello\tWorld!")

print(r"Hello\tWorld!")

Exact matchingExact matching

A regular expression (RE) can be a generic string
Here, matching a pattern to a text operates just like <pattern> in

<text>

In []:

In []:

refind(r"Hello", "Hello, World!")

matching is case sensivity

refind(r"hello", "Hello, World!")

The wildcard character, The wildcard character, .

In a RE, the . character will match any single

character

In []:

In []:

In []:

refind(r".at", "This is my pet cat, Spot")

by default, we highlight the FIRST match to the pattern

refind(r".ello", "Hello mother, hello father")

refind(r"..i..", "Life, the Universe, and Everything")

EscapingEscaping

If you want to match a literal . (or another special character), write it as

\.

This is called "escaping the character"

In []:

In []:

refind(r".", "I am a short sentence.")

refind(r"\.", "I am a short sentence.")

Character classesCharacter classes

\d matches any digit (0-9)

\D matches any non-digit
\w matches any "word character" (A-Z, a-z, 0-9, _)

\W matches any non-word character

\s matches any whitespace character (e.g. space `, tab\t,

newline\n`)

\S matches any non-whitespace character

In []:

In []:

In []:

refind(r"\d\d\d\d", "Yesterday, December 7, 1941--a date which will live in inf

amy")

refind(r"\d\D", "Do you want to see the movie in 2D or 3D?")

refind(r"\s\w\w\w\s", "It's my party and I'll cry if I want to.")

Custom character classesCustom character classes

Sets or spans of characters inside of []s de�ne a custom character

class
[AB] matches A or B

[A-E] matches any character A through E

[A-Za-z0-9_] matches any word character (equivalent to \w)

In []:

In []:

refind(r"[ACGT]", "DNA sequences are composed of A, C, G, and T nucleotides.")

refind(r"[bcr]at", "This is my pet rat, Spot")

Negation in custom character classesNegation in custom character classes

Negate a character class with an initial ^ (i.e. match the opposite
characters)
[^AB] matches any character except A and B

[^A-E] matches any character except A through B

[^A-Za-z0-9_]matches any non-word character (equivalent to \W)

In []: refind(r"[^c]at", "My pet cat ate your pet rat.")

BoundariesBoundaries

^ matches the start of a string (before the �rst character)

$ matches the end of a string

\b matches a "word boundary" (beginning/end of a line, whitespace, or a non-

word character)

In []:

In []:

In []:

refind(r"^Jon", "Jane Doe please meet Jon Snow")

refind(r"deer$", "Doe, a deer, a female deer")

refind(r"deer\b", "Doe, a deer, a female deer")

RepetitionRepetition

REs support syntax for specify a speci�c number (or range) of characters to
match
A+ matches 1 or more As

A* matches 0 or more As

A? matches 0 or 1 As (an "optional" A)

In []:

In []:

In []:

refind(r"A+", "BBAAAAABBAAABBB")

refind(r"AB*A", "BBAABB")

refind(r"Erick?", "Who spells 'Eric' with a 'ck'?")

REs are greedy by defaultREs are greedy by default

They return the match that starts earliest and ends latest
This a very common source of surprises in RE-based
matching

In []:

In []:

".*" matches the longest possible string

refind(r"A.*A", "The band ABBA traveled to England, France, and Australia")

".*?" matches the shortest possible string

refind(r"A.*?A", "The band ABBA traveled to England, France, and Australia")

Bounded repetitionBounded repetition

A{N} matches exactly N As in a row

A{N,M} matches between N and M As in a row

(inclusive)
A{N,} matches N or more As in a row

A{,M} matches up to M As in a row

In []:

Helpful for defensive coding
A{10} is a lot easier to get right than

AAAAAAAAAA

refind(r"\bA{3,5}\b", "A AAAAAA AAA AA AAAAAAAAAAAAA AAA A")

GroupsGroups

We can de�ne larger pieces of a pattern within ()s

These groups can be repeated (like a character or character class)
We'll see later that we can extract these individually with Python
code

In []: refind(r"(na)+", "Do you prefer banana or pineapple?")

Groups with optionsGroups with options

Inside a group, | can be used to separate multiple options

Behaves like a logical "or", e.g. (AA|BB) matches AA or

BB

In []:

In []:

refind(r"(birthday|wedding|promotion)", "Congratulations on your promotion!!")

refind(r"Eri(c|ck|ch|q)", "I think Eriq La Salle's spelling is the coolest")

Referencing groupsReferencing groups

The �rst de�ned group can be referenced later with
\1

(Likewise for the second \2, third \3, etc.)

This is where things start to get really funky

In []:

In []:

find the first pair of letters repeated once

refind(r"(..)\1", "Do papas like bananas?")

find any letter followed by <n>, then itself, then <n> again

refind(r"(.n)\1", "Do papas like bananas?")

I think that's enough...I think that's enough...

While there's more RE syntax out there, you can do a lot with just the preceding
syntax

Back to pattern matching e-mail addressesBack to pattern matching e-mail addresses

Using what we've seen, can we come up with a better e-mail pattern than just
@?

In []: pattern = r"@"

refind(pattern, "franzosa@hsph.harvard.edu")

refind(pattern, "follow me on Twitter @franzosa")

refind(pattern, "let's meet @1pm today")

TroubleshootingTroubleshooting

Did you use \d when you meant \D?

Did you use a greedy match .* when you wanted a minimal match

.*??

Did you forget to escape a symbolic character, e.g. 1 + 2 vs. 1 \+ 2?

Did you make an assumption that wasn't true?

Regular expressions in PythonRegular expressions in Python

Imported as the re module (already did this above)

Comes with a number of functions, of which we'll
cover:

re.search()

re.finditer()

re.split()

re.sub()

Comes with a new data type, the Match object

re.search(PATTERN, TEXT)

Takes a pattern and text strings as arguments
Returns None if the pattern isn't found in the

text
Otherwise it returns a Match object

In []:

In []:

The above output is Python's way of representing a generic piece of data
The Match object doesn't have a simple representation like a string or

list

re.search(r"i", "team")

re.search(r"eric", "America")

The The Match object object

Has methods for describing the result of a pattern match
Capture the Match in a variable, then call methods on that

variable

In []:

In []:

In []:

In []:

match = re.search(r"(..)\1", "Do papas like bananas?")

start position

match.start()

end position

match.end()

pull out the groups that were matched

match.group(1)

Aside: the Aside: the refind() function function

With this information you should be able to unpack what's happening in the
refind() utility function we de�ned and used earlier in the lecture

Note the use of an if/else block to change the functions behavior depending

on whether or not a match to the speci�ed pattern was not (testing if the
returned value was None).

re.finditer(PATTERN, TEXT)

Takes a pattern and text strings as arguments
Returns matches one-at-a-time inside a for loop

Similar to the behavior of the range() function

Finds largest match starting from beginning of text, then restarts after that
match

In []: text = "AAAAA AAA A"

for match in re.finditer(r"A+", text):

 print(text[match.start():match.end()])

re.split(PATTERN, TEXT)

Takes a pattern and text strings as arguments
Finds all instances of the pattern (similar to re.finditer(

))

Returns a list of strings after splitting the text on those
patterns
A much more powerful version of str.split(PATTERN)

In []:

In []:

str.split(PATTERN) can only split on a well-defined pattern, e.g. <tab>

"1\t2\t3".split("\t")

re.split(PATTERN, TEXT) can split on any RE-definable pattern

re.split(r"[aeiou]{2}", "Congratulations on your promotion")

re.sub(PATTERN, SUBSTITUTION, TEXT)

Takes pattern, substitution, and text strings as arguments
Finds all instances of the pattern (similar to re.finditer())

Replaces all instances of the pattern with the SUBSTITUTION string
A much more powerful version of str.replace(PATTERN,

SUBSTITUTION)

In []:

In []:

In []:

str.replace(PATTERN, SUBSTITUTION) can only work with well-defined patterns

"banana".replace("a", "o")

re.sub(PATTERN, SUBSTITUTION, TEXT) can replace any RE-definable pattern

re.sub(r"[aeiou]{2}", r"OO", "Congratulations on your promotion")

SUBSTITUTION can refer to pattern groups

re.sub(r"(\w+), (\w+)", r"\2 \1", "Franzosa, Eric")

ResourcesResources

There's more info in the Python docs, if interested:

RegExr is an online tool for testing out REs and learning how the work:

RegexOne is an online "quiz" for learning RE concepts (today's activity)

https://docs.python.org/3/library/re.html#regular-expression-syntax
(https://docs.python.org/3/library/re.html#regular-expression-syntax)

https://regexr.com/ (https://regexr.com/)

https://regexone.com/ (https://regexone.com/)

https://docs.python.org/3/library/re.html#regular-expression-syntax
https://regexr.com/
https://regexone.com/

