
References and an intro to Object-OrientedReferences and an intro to Object-Oriented

Programming (OOP)Programming (OOP)

Eric Franzosa, Ph.D. (franzosa@hsph.harvard.edu)

2019-12-16

OutlineOutline

Final Project reminder
Due NEXT Monday (extended)
Bonus of�ce hour this Weds (+ regular Friday hour)

Grading reminder
Contact me if you are targetting Mar 2020
graduation

Today's material
Data vs. references
Intro to Object-Oriented Programming (OOP)

Variables as referencesVariables as references

We've thought of variables as "buckets" for storing data
This is a useful analogy, but as some of you are �nding, it breaks down in certain
cases

In reality, data are stored in literal blocks of your computer memory
Represented as sequences of 0/1 values (bits) = binary code

Variables are themselves data that point to (reference) other locations in
memory

In []: # this code prints the memory address of the string data argument

hex(id("Hello, World!"))

The problems with the bucket analogy are less obvious with strings, numbers,
and booleans because their can't be changed in place (they are immutable).

In []:

In []:

In []:

here, <a> and refer to the same piece of data

a = "Hello, World!"

b = a

print("<a> =", a, "@", hex(id(a)))

print(" =", b, "@", hex(id(b)))

b.upper() returns NEW data

b = b.upper()

 now refers to the new data; <a> still refers to the original data

print("<a> =", a, "@", hex(id(a)))

print(" =", b, "@", hex(id(b)))

Let's try something similar with a mutable piece of data, i.e. a
list

In []:

In []:

In []:

here, <a> and refer to the same piece of data

a = [1,2,3]

b = a

print("<a> =", a, "@", hex(id(a)))

print(" =", b, "@", hex(id(b)))

b.append() alters the underlying list IN PLACE

b.append(4)

<a> and continue to refer to the same (now modified data); <a>'s meaning h

as changed!

print("<a> =", a, "@", hex(id(a)))

print(" =", b, "@", hex(id(b)))

The same concepts in cartoon formThe same concepts in cartoon form

references-cartoon.png

The The is operator operator

Because comparing memory addresses by eye is hard, Python includes a special
operator (is) that tests if its operands (usually variables) are pointing at the

same memory location / piece of data.

In []:

In []:

In []:

In []:

a = [1,2,3]

b = [1,2,3]

c = a

a == b # returns True because <a> and have equivalent values

a is b # returns False because <a> and were defined separately

c is a # returns True because <a> and <c> point to the same data in memory

A helper function for the next few slidesA helper function for the next few slides

In []: def compare(a, b):

 print("arg1 represents:", a)

 print("arg2 represents:", b)

 print("args have" + (" THE SAME " if a == b else " DIFFERENT ") + "value

(s)")

 print("args have" + (" THE SAME " if a is b else " DIFFERENT ") + "memory l

ocation(es)")

 return None

Use Use .copy() to create a new copy of to create a new copy of

list//dict data data

In []:

In []:

here, <a> and refer to the same piece of data

a = [1,2,3]

b = a.copy()

compare(a, b)

empty slicing also works (lists only)

c = a[:]

compare(a, c)

If you have a complex data structure, e.g. a list of lists, use copy.deepcopy()

instead
.copy() is "shallow" - it only copies the structure of the outer list

data referenced inside the list would still be copied as a reference

In []:

In []:

In []:

In []:

a = [[1,2],[3,4]]

b = a.copy()

the outer lists are different

compare(a, b)

but the inner lists point to the same data (copy was "shallow")

compare(a[0], b[0])

changing inner element changes same data underlying <a> inner element

b[0][0] = "Hello, World!"

print(a[0][0])

copy.deepcopy() �xes this

behavior

In []:

In []:

In []:

from copy import deepcopy

a = [[1,2],[3,4]]

b = deepcopy(a)

now even the nested data is different

compare(a[0], b[0])

<a>'s inner data not perturbed by changing

b[0][0] = "Hello, World!"

print(a[0][0])

Data are passed to functions by referenceData are passed to functions by reference

Which can result in functions changing mutable data unexpectedly when
provided as an argument

In []:

In []:

In []:

In []:

a = [1,2,3]

def sum_squares(numbers):

 for i in range(len(numbers)):

 numbers[i] = numbers[i] ** 2

 return sum(numbers)

sum_squares returns the expected sum...

sum_squares(a)

... but it also updated <a> in the process! (Surprise?)

print(a)

What is Object-Oriented Programming (OOP)?What is Object-Oriented Programming (OOP)?

A style of programming that bundles data with related methods
These bundles are called classes (or types)
Classes are templates for making instances of a particular kind of data object

e.g. str, list, and numpy.ndarray are classes

OOP style asks data to perform actions, rather than applying transformations to
data

e.g. str.upper(), list.sort()

In []: # the type() function tells us what type the given data belongs to

type("Hello, World!")

Key OOP ideasKey OOP ideas

Classes are organized hierarchically as superclasses and subclasses
This allows us to de�ne progressively more speci�c versions of
objects
Thing > Animal > Mammal > Cow
Thing > Animal > Mammal > Cat

Classes inherit the attributes and abilities of their parent classes
(inheritance)

Mammal has a method produce_milk

Hence Cow.produce_milk() works

Hence Cat.produce_milk() works

Different classes of object can respond to the same request in different
ways

Referred to as polymorphism
Cow.speak() returns "moo"

Cat.speak() returns "meow"

De�ning our own classes of objectDe�ning our own classes of object

Not every program/project needs new classes of object
In my experience, much less common than new functions, for example

They become handy when built-in data types (e.g. list and dict) come up

short
Let's look at an example where this is the case

Modeling doorsModeling doors

A door is an object with at least two obvious attributes:
1. Some sort of unique identi�er (e.g. a door

number)
2. A closed/open status

In []:

In []:

Python lets us store misc. attributes as lists; is a list a good door?

door1 = [101, True]

door2 = [102, False]

dictionaries let us name the attributes, which is a bit better

door1 = {"number": 101, "is_open":True}

door2 = {"number": 102, "is_open":False}

In []:

In []:

In []:

we can define transformations for a door

def open_door(door):

 door["is_open"] = True

door2

open_door(door2)

door2

Later I realize that doors can have another status:
locked/unlocked

In []:

In []:

In []:

In []:

I start adding this field to my door dictionaries from now on

door3 = {"number": 103, "is_open":False, "is_locked":True}

I also need to update the opening function

def open_locking_door(door):

 if not door["is_locked"]: # <--

 door["is_open"] = True

door3

open_locking_door(door3)

door3

In []: # the new opening function won't work on our earlier-defined doors

open_locking_door(door2)

Issues with the above approachIssues with the above approach

I'm relying on my memory to track the dictionaries we created as "doors"
There is nothing enforcing the requirements to be a "door"

is {"number":104, "is_locked":True} a "door"?

There is nothing tying the door transformations we wrote to the door
data
There is nothing tying the locked door to the more generic door

De�ning a De�ning a Door object object

In []:

class is a Python keyword for de�ning a new type of object with a block of

code
The block encapsulates relevant functions (methods) and data (attributes)
The __init__ method de�nes what happens when we make a new instance of

the object
Here, set a number (passed as an argument) as the Door's number
Also, create an attribute is_open set to False

self is used to refer to the object itself in methods (more in a bit)

class Door:

 def __init__(self, number):

 self.number = number

 self.is_open = False

Calling a Door like a function runs its __init__ method and returns a new

door
Python's __init__ is called a constructor in other languages

In []:

In []:

In []:

In []:

make a new Door numbered 101

door1 = Door(101)

Python sees this door as a new kind of object

print(door1)

access Door attributes with <.> syntax

door1.number

note that <is_open> we defined as False by default

door1.is_open

We can associate other Door-related methods with the Door

class

In []:

The method call door1.check_status() behaves like a function call

check_status(door1)

The self argument of check_status is what allows this to work

door1.check_status() means "call check_status with door1

as the �rst argument"
Hence self is always present as the �rst argument of a method

class Door:

 def __init__(self, number):

 self.number = number

 self.is_open = False

 def open(self):

 self.is_open = True

 def check_status(self):

 print("I'm open" if self.is_open else "I'm closed")

In []:

In []:

door1 = Door(101)

call Door methods using <.> syntax

door1.check_status()

door1.open()

door1.check_status()

In []:

In []:

let's make some more Doors

door2 = Door(102)

door3 = Door(103)

we can interact with them efficiently

for d in [door1, door2, door3]:

 d.check_status()

In []:

In []:

In []:

In []:

oops, I accidentally repeated a door number

door4 = Door(103)

door3 and door4 are different, even though their attributes are all the same

door3 == door4

and verified by their memory addresses

print("<door3> is located @", hex(id(door3)))

print("<door4> is located @", hex(id(door4)))

compare with

door3 = {"number": 103, "is_open":True}

door4 = {"number": 103, "is_open":True}

door3 == door4

The power of The power of Door (i.e. OOP) (i.e. OOP)

We don't have to rely on our memory for de�nition
Need a door? Call Door

Can have required (e.g. number) and default (e.g. is_open)

attributes
Relevant methods are associated with the object (e.g. open)

Object is distinct from the sum of the data it contains
Next up: We can easily make other types of doors

De�ning a De�ning a SecureDoor object object

In []:

class SecureDoor(Door) says SecureDoor is a type of Door

By default, SecureDoor inherits all the methods and attributes of

Door

We've added a new attribute to the __init__: is_locked

We've reworked open to check is_locked

We didn't rede�ne check_status

class SecureDoor(Door):

 def __init__(self, number):

 # use the Door constructor to start setup of this door

 Door.__init__(self, number)

 # finish by adding a new attribute: <is_locked>

 self.is_locked = True

 # REDEFINE open() to check <is_locked>

 def open(self):

 if not self.is_locked:

 self.is_open = True

In []:

In []:

In []:

let's make a secure door

sec_door = SecureDoor(105)

SecureDoor inherits the <check_status> method from Door

sec_door.check_status()

But its <open> method works differently

sec_door.open()

sec_door.check_status()

Because we have implemented an open method in all doors, we can still do intuitive

things like:

In []: # polymorphism: <open> works differently on different doors

for d in [door1, door2, sec_door]:

 d.open()

 d.check_status()

Practical example: De�ning an Practical example: De�ning an Interval class class

Could represent a span of years, e.g. 1983-2018
Could represent a span of genome coordinates, e.g. 1,383,452 to
1,384,591

In []:

In []:

In []:

In []:

an interval is defined by a start and end position

class Interval():

 def __init__(self, start, end):

 self.start = start

 self.end = end

ival1 = Interval(1983, 2018)

print(ival1)

ival1.start, ival1.end

A lot of Python polymorphism comes from implementing special object methods
�anked by __s

For example, implement __repr__ to de�ne interaction with the print

function
This is also the method that is called if we evaluate a piece of data on its own line
in a Jupyter Notebook

In []:

In []:

In []:

In []:

class Interval():

 def __init__(self, start, end):

 self.start = start

 self.end = end

 def __repr__(self):

 return "Interval(" + str(self.start) + " -> " + str(self.end) + "

)"

ival1 = Interval(1983, 2018)

print(ival1)

ival1

Implement __len__ to determine interaction with the len

function

In []:

In []:

In []:

class Interval():

 def __init__(self, start, end):

 self.start = start

 self.end = end

 def __repr__(self):

 return "Interval(" + str(self.start) + " -> " + str(self.end) + "

)"

 def __len__(self):

 return self.end - self.start

ival1 = Interval(1983, 2018)

len(ival1)

The length of a discrete interval is different from that of a continuous
interval

We must include the end point as a unit of distance
For example, the interval from 2 to 4 in 1->2->3->4->5 contains 3

numbers
This is a great use-case for subclassing/polymorphism

In []:

In []:

In []:

class DiscreteInterval(Interval):

 # Note: no <__init__>, we can just inherit the one from <Interval>

 def __len__(self):

 return self.end - self.start + 1

ival1 = DiscreteInterval(2, 4)

len(ival1)

Let's extend Interval to make a better interval with an extra

method
Speci�cally, one that will test if the interval contains a particular value

In []:

In []:

In []:

In []:

class BetterInterval(Interval):

 def contains(self, value):

 """ returns True if <value> in the interval """

 return self.start < value < self.end

ival1 = BetterInterval(1983, 2018)

ival1.contains(1776)

ival1.contains(1995)

Let's extend Interval (again) to make a better interval with an extra method

This time, let's de�ne an interval that can test if it overlaps with some other
interval
HINT: two intervals overlap if the LARGER START is smaller than the SMALLER
END

In []:

In []:

In []:

In []:

class BetterInterval(Interval):

 def overlaps(self, ival2):

 """ return True if this interval overlaps ival2 """

 return max(self.start, ival2.start) < min(self.end, ival2.end)

ival1 = BetterInterval(1983, 2018)

note that second interval doesn't have to be a <BetterInterval>

ival2 = Interval(1969, 1995)

ival3 = Interval(1969, 1974)

ival1.overlaps(ival2)

ival1.overlaps(ival3)

Let's make a �nal interval that will merge two overlapping intervals as a new
interval

In []:

In []:

In []:

In []:

class BestInterval(BetterInterval):

 def merge(self, ival2):

 ret = None

 if self.overlaps(ival2):

 min_start = min(self.start, ival2.start)

 max_end = max(self.end, ival2.end)

 ret = BestInterval(min_start, max_end)

 return ret

ival1 = BestInterval(1983, 2018)

ival2 = Interval(1969, 1995)

ival3 = Interval(1969, 1974)

print(ival1.merge(ival2))

print(ival1.merge(ival3))

If we de�ne our merge function as __add__ instead, then we can use the

addition operator (+) to merge intervals

This is how + can add numbers but concatenate strings in Python:

Polymorphism!

In []:

In []:

In []:

class BestInterval(BetterInterval):

 def __add__(self, ival2):

 ret = None

 if self.overlaps(ival2):

 min_start = min(self.start, ival2.start)

 max_end = max(self.end, ival2.end)

 ret = BestInterval(min_start, max_end)

 return ret

ival1 = BestInterval(1983, 2018)

ival2 = Interval(1969, 1995)

ival3 = Interval(1969, 1974)

ival1 + ival2

Practical example: De�ning a Practical example: De�ning a SimpleCounter class class

For counting the elements of iterable objects
A task that came up on numerous
homeworks

In []: class SimpleCounter():

 def __init__(self):

 self.counts = {}

 def update(self, iterable):

 for thing in iterable:

 if thing not in self.counts:

 self.counts[thing] = 0

 self.counts[thing] = self.counts[thing] + 1

 def __repr__(self):

 return str(self.counts)

In []: sc = SimpleCounter()

sc.update("bananarama")

print(sc)

Let's subclass SimpleCounter to make something a bit more aesthetically

pleasing
We'll rede�ne __repr__, but __init__ and update don't need to change

In []:

In []:

class PrettyCounter(SimpleCounter):

 def __repr__(self):

 ret = []

 for item, count in self.counts.items():

 ending = "s" if count > 1 else ""

 ret.append("I found '{}' {:>2} time{}".format(item, count, ending

))

 return "\n".join(ret)

pc = PrettyCounter()

pc.update("bananarama")

pc.update("ana, my nana, ate a banana")

print(pc)

As you may have discovered, there's a similar Counter in the collections

module:

In []:

Nothing magic about the "of�cial" Counter - it works just like ours!

from collections import Counter

cc = Counter()

cc.update("bananarama")

print(cc)

Practical example: Practical example: Tree data data

A tree is a general data structure in which items (called nodes) are arranged
hierarchically
The tree begins at a root node

All other nodes have exactly one parent

A node can therefore have 0 or more children

In []: # The class to represent a <Node> is not too complicated

class Node():

 def __init__(self, name):

 self.name = name

 self.parent = None

 self.children = []

 def __repr__(self):

 return self.name

In []: # The class to represent a <Tree> is more involved (it does most of the work)

class Tree():

 def __init__(self,):

 """ a dictionary to map node names to nodes in the tree """

 self.nodes = {}

 def get_node(self, name):

 """ fetch an existing node by name, or create it if new """

 if name not in self.nodes:

 self.nodes[name] = Node(name)

 return self.nodes[name]

 def populate(self, relationships):

 """ add parent/child relationships to the tree """

 for parent, child in relationships:

 pnode = self.get_node(parent)

 cnode = self.get_node(child)

 cnode.parent = pnode

 pnode.children.append(cnode)

In []:

In []:

relationships = [

 ["thing", "vehicle"],

 ["thing", "animal"],

 ["vehicle", "plane"],

 ["vehicle", "train"],

 ["vehicle", "automobile"],

 ["animal", "mammal"],

 ["mammal", "cat"],

 ["mammal", "cow"],

]

my_tree = Tree()

my_tree.populate(relationships)

In []: for name, node in my_tree.nodes.items():

 print(node)

 print(" parent :", node.parent)

 print(" children :", node.children)

ChallengesChallenges

Add a method to Tree called get_root that will �nd and return the tree's root

node (hint: in a properly de�ned tree, the root is the only node that doesn't have
a parent).

Add a method to Tree called get_leaves that will �nd and return the tree's

leaf nodes (hint: a leaf is a node that doesn't have any children of its own).

(Harder) Add a method to Tree called get_lineage. This function should take

the name of a node as an argument and return the path from the root of the tree
to that node. For example my_tree.get_lineage('cow') should return

['thing', 'animal', 'mammal', 'cow'] based on the data above.

