References and an intro to Object-Oriented
Programming (OOP)

Eric Franzosa, Ph.D. (franzosa@hsph.harvard.edu)

2019-12-16

Outline

e Final Project reminder

= Due NEXT Monday (extended)

= Bonus office hour this Weds (+ regular Friday hour)
e Gradingreminder

= Contact me if you are targetting Mar 2020

graduation

e Today's material

= Data vs. references

= [ntro to Object-Oriented Programming (OOP)

Variables as references

e We've thought of variables as "buckets" for storing data

e This is a useful analogy, but as some of you are finding, it breaks down in certain
cases

e |nreality, data are stored in literal blocks of your computer memory
= Represented as sequences of 0/1 values (bits) = binary code
e Variables are themselves data that point to (reference) other locations in
memory

In []: # this code prints the memory address of the string data argument
hex(id("Hello, World!"))

e The problems with the bucket analogy are less obvious with strings, numbers,
and booleans because their can't be changed in place (they are immutable).

In [1: # here, <a> and refer to the same piece of data
a = "Hello, World!"
b=a

print("<a> , a, "@", hex(id(a)))
prlnt(|| ||' b’ ||@||’ heX(ld(b)))

In [1: # b.upper() returns NEW data
b = b.upper()

In [1: # now refers to the new data; <a> still refers to the original data
print("<a> =", a, "@", hex(id(a)))

print(" ; b, "@", hex(id(b)))

e |et's try something similar with a mutable piece of data, i.e. a
list

In [I: # here, <a> and refer to the same piece of data

a=1[1,2,3]

b =a

print("<a> =", a, "@", hex(id(a)))
print(" =", b, "@", hex(id(b)))

In [1: # b.append() alters the underlying list IN PLACE
b.append(4)

In [1: # <a> and continue to refer to the same (now modified data); <a>'s meaning h
as changed!

print("<a> =", a, "@", hex(id(a)))

d(b)))

print(" =", b, "@", hex(i

The same concepts in cartoon form

references-cartoon.png

In

In

In

In

[

[

[

[

]:

]:

]:

]:

The 1s operator

T o

is

is

Because comparing memory addresses by eye is hard, Python includes a special
operator (1s) that tests if its operands (usually variables) are pointing at the

same memory location / piece of data.

[1,2,3]
[1,2,3]
a

b # returns True because <a> and have equivalent values
b # returns False because <a> and were defined separately

a # returns True because <a> and <c> point to the same data in memory

A helper function for the next few slides

In []: def compare(a, b):

print("argl represents:", a)

print("arg2 represents:", b)

print("args have" + (" THE SAME " if a == b else " DIFFERENT ") + "value
(s)")

print("args have" + (" THE SAME " if a is b else " DIFFERENT ") + "memory 1
ocation(es)")

return None

Use . copy() to create a new copy of
list/dict data

In [1: # here, <a> and refer to the same piece of data
a = [1,2,3]
b = a.copy()
compare(a, b)

In [1: # empty slicing also works (lists only)
c =al:]
compare(a, c)

In

In

In

In

[

[

[

[

]:

]:

]:

]:

e |fyou have a complex data structure, e.g. a list of lists, use copy .deepcopy()
instead
= copy() is"shallow"-itonly copies the structure of the outer list
» datareferenced inside the list would still be copied as a reference

[[1,2],13,4]1]
a.copy()

T Q
i

the outer lists are different
compare(a, b)

but the inner lists point to the same data (copy was "shallow")
compare(a[0], b[O])

changing inner element changes same data underlying <a> inner element
b[0][0] = "Hello, World!"
print(ale][e])

e copy.deepcopy() fixesthis
behavior

In []: from copy import deepcopy
a=1[[1,2],[3,4]]
b = deepcopy(a)

In []: # now even the nested data is different
compare(a[0], b[O])

In [1: # <a>'s inner data not perturbed by changing
b[0][0] = "Hello, World!"
print(a[0][0])

In

In

In

In

[

[

[

[

]:

]:

]:

]:

Data are passed to functions by reference

e Which can result in functions changing mutable data unexpectedly when
provided as an argument

a=1[1,2,3]

def sum squares(numbers):
for i in range(len(numbers)):
numbers[i] = numbers[i] ** 2
return sum(numbers)

sum _squares returns the expected sum. ..
sum_squares(a)

... but it also updated <a> in the process! (Surprise?)
print(a)

What is Object-Oriented Programming (OOP)?

e A style of programming that bundles data with related methods
e These bundles are called classes (or types)
e Classes are templates for making instances of a particular kind of data object
m eg . str,list,and numpy.ndarray are classes
e OOP style asks data to perform actions, rather than applying transformations to
data
m eg.str.upper(),list.sort()

In []: # the type() function tells us what type the given data belongs to
type("Hello, World!")

Key OOP ideas

e Classes are organized hierarchically as superclasses and subclasses
= This allows us to define progressively more specific versions of
objects
= Thing > Animal > Mammal > Cow
» Thing > Animal > Mammal > Cat

e Classesinherit the attributes and abilities of their parent classes
(inheritance)

= Mammal has a method produce milk
= Hence Cow.produce milk() works
= HenceCat.produce milk() works

e Different classes of object can respond to the same request in different
ways
m Referred to as polymorphism
= Cow.speak() returns"moo"

= Cat.speak() returns"meow"

Defining our own classes of object

e Not every program/project needs new classes of object
= |n my experience, much less common than new functions, for example

e They become handy when built-in data types (e.g. List and dict) come up

short
e Let'slook at an example where this is the case

Modeling doors

e Adoor is an object with at least two obvious attributes:
1. Some sort of unique identifier (e.g. a door
number)
2. A closed/open status

In [1: # Python lets us store misc. attributes as lists; is a list a good door?
doorl = [101, True]
door2 = [102, False]

In [1: # dictionaries let us name the attributes, which is a bit better
doorl {"number": 101, "is open":True}
door?2 {"number": 102, "is open":False}

In [1: # we can define transformations for a door
def open door(door):
door["is open"] = True

In []: door2

In []: open door(door2)
door2

In

In

In

In

[

[

[

[

]:

]:

]:

]:

e |ater | realize that doors can have another status:
locked/unlocked

I start adding this field to my door dictionaries from now on
door3 = {"number": 103, "is open":False, "is locked":True}

I also need to update the opening function
def open locking door(door):
if not door["is locked"]: # <--
door["is open"] = True

door3

open_ locking door(door3)
door3

In []: # the new opening function won't work on our earlier-defined doors
open_ locking door(door2)

Issues with the above approach

* |I'mrelying on my memory to track the dictionaries we created as "doors'
e Thereis nothing enforcing the requirements to be a "door"

= js{"number":104, "is locked":True} a"door"?
e Thereis nothing tying the door transformations we wrote to the door

data
e Thereis nothing tying the locked door to the more generic door

Defining a Door object

In [1: class Door:
def init (self, number):
self.number = number
self.is open = False

e class isaPython keyword for defining a new type of object with a block of
code
e The block encapsulates relevant functions (methods) and data (attributes)
e The 1nit method defines what happens when we make a new instance of
the object
= Here, set a number (passed as an argument) as the Door's number
= Also, create an attribute is open set to False
e selfisusedtorefer tothe object itself in methods (more in a bit)

In

In

In

In

[

[

[

[

]:

]:

]:

]:

e CallingaDoor likeafunctionrunsits init method and returns a new
door
= Python's init iscalled a constructor in other languages

make a new Door numbered 101
doorl = Door(101)

Python sees this door as a new kind of object
print(doorl)

access Door attributes with <.> syntax
doorl.number

note that <is open> we defined as False by default
doorl.is open

¢ \We can associate other Door-related methods with the Door
class

In [1: class Door:

def init (self, number):
self.number = number
self.is open = False

def open(self):
self.is open = True

def check status(self):
print("I'm open" if self.is open else "I'm closed")

e The method calldoorl.check status() behaveslike afunction call
check status(doorl)
e The self argument of check status iswhat allows this to work
= doorl.check status() means'callcheck statuswithdoorl

as the first argument”
= Hence self is always present as the first argument of a method

In [1: doorl = Door(101)
call Door methods using <.> syntax
doorl.check status()

In [1: doorl.open()
doorl.check status()

In []: # let's make some more Doors

door2 = Door(102)
door3 = Door(103)
In [1: # we can interact with them efficiently

for d in [doorl, door2, door3]:
d.check status()

oops, I accidentally repeated a door number
doord4 = Door(103)

door3 and doord4 are different, even though their attributes are all the same
door3 == door4

and verified by their memory addresses
print("<door3> is located @", hex(id(door3)))
print("<door4> is located @", hex(id(doord)))

compare with
door3 = {"number": 103, "is open":True}
doord = {"number": 103, "is open":True}
door3 == door4

The power of Door (i.e. OOP)

We don't have to rely on our memory for definition

= Need adoor?CallDoor
Can have required (e.g. number) and default (e.g. is _open)
attributes
Relevant methods are associated with the object (e.g. open)
Obiject is distinct from the sum of the data it contains
Next up: We can easily make other types of doors

Defining a SecureDoor object

In []: class SecureDoor(Door):

def init (self, number):
use the Door constructor to start setup of this door
Door. init (self, number)
finish by adding a new attribute: <is locked>
self.is locked = True

REDEFINE open() to check <is locked>
def open(self):
if not self.is locked:
self.is open = True

e class SecureDoor(Door) saysSecureDoorisatypeofDoor

e Bydefault,SecureDoor inherits all the methods and attributes of
Door

e We've added a new attributetothe init :is locked

e We'vereworked opentocheckis locked

e Wedidn't redefine check status

In []1: # let's make a secure door
sec_door = SecureDoor(105)

In [1: # SecureDoor inherits the <check status> method from Door
sec _door.check status()

In [1: # But its <open> method works differently
sec _door.open()
sec door.check status()

Because we have implemented an open method in all doors, we can still do intuitive
things like:

In [1: # polymorphism: <open> works differently on different doors

for d in [doorl, door2, sec door]:
d.open()
d.check status()

In

In

In

In

[

[

[

[

]:

]:

]:

]:

Practical example: Defining an Interval class

e Could represent a span of years, e.g. 1983-2018
e Could represent a span of genome coordinates, e.g. 1,383,452 to
1,384,591

an interval 1is defined by a start and end position
class Interval():
def init (self, start, end):
self.start = start
self.end = end

ivall = Interval(1983, 2018)
print(ivall)

ivall.start, ivall.end

In

In

In

In

[

[

[

[

]:

]:

]:

]:

¢ Alot of Python polymorphism comes from implementing special object methods

flankedby s

e Forexample,implement repr todefineinteraction withthe print

function

e Thisis also the method that is called if we evaluate a piece of data on its own line

in a Jupyter Notebook

class Interval():
def init (self, start, end):
self.start = start
self.end = end
def repr (self):

return "Interval(" + str(self.start) + "
)II

ivall = Interval(1983, 2018)
print(ivall)

ivall

-> " + str(self.end) + "

e Implement len todetermineinteraction with the len
function

In [1: class Interval():
def init (self, start, end):
self.start = start
self.end = end
def repr_(self):
return "Interval(" + str(self.start) + " -> " + str(self.end) + "
)II

def 1len (self):
return self.end - self.start

In []1: ivall = Interval(1983, 2018)

In []: len(ivall)

e Thelength of a discrete interval is different from that of a continuous
interval

» We must include the end point as a unit of distance

e For example, theintervalfrom2to4inl->2->3->4->5contains 3
numbers

e This is a great use-case for subclassing/polymorphism

In [1: class DiscreteInterval(Interval):

Note: no < 1init >, we can just inherit the one from <Interval>

def len (self):
return self.end - self.start + 1

In []: ivall = DiscretelInterval(2, 4)

In []: len(ivall)

In

In

In

In

[

[

[

[

]:

]:

]:

]:

e Let'sextend Interval to make a better interval with an extra

method

e Specifically, one that will test if the interval contains a particular value

class BetterInterval(Interval):

def contains(self, value):
"o returns True if <value> in the interval
return self.start < value < self.end

ivall = BetterInterval(1983, 2018)

ivall.contains(1776)

ivall.contains(1995)

munn

In

In

In

In

[

[

[

[

]:

]:

]:

]:

e Let'sextend Interval (again) to make a better interval with an extra method

e Thistime, let's define an interval that can test if it overlaps with some other
interval

e HINT: two intervals overlap if the LARGER START is smaller than the SMALLER
END

class BetterInterval(Interval):

def overlaps(self, ival2):
""" return True if this interval overlaps ival2 """
return max(self.start, ival2.start) < min(self.end, ival2.end)

ivall = BetterInterval(1983, 2018)

note that second interval doesn't have to be a <BetterInterval>
ival2 Interval(1969, 1995)

ival3 Interval(1969, 1974)

ivall.overlaps(ival2)

ivall.overlaps(ival3)

e Let's make a final interval that will merge two overlapping intervals as a new
interval

In [1: class BestInterval(BetterInterval):

def merge(self, ival2):
ret = None
if self.overlaps(ival2):
min start = min(self.start, ival2.start)
max_end = max(self.end, ival2.end)
ret = BestInterval(min start, max end)
return ret

In []: ivall
ival?2
ival3

BestInterval(1983, 2018)
Interval(1969, 1995)
Interval(1969, 1974)

In [1: print(ivall.merge(ival2))

In [1: print(ivall.merge(ival3))

e If wedefineour merge functionas add instead, then we can use the
addition operator (+) to merge intervals

e This is how + can add numbers but concatenate strings in Python:
Polymorphism!

In []: class BestInterval(BetterInterval):
def add (self, ival2):

ret = None

if self.overlaps(ival2):
min start = min(self.start, ival2.start)
max _end = max(self.end, ival2.end)
ret = BestInterval(min start, max _end)

return ret

In []: 4dvall
ival?2
ival3

BestInterval(1983, 2018)
Interval(1969, 1995)
Interval(1969, 1974)

In []1: 4ivall + ival2

Practical example: Defining a S1mpleCounter class

e For counting the elements of iterable objects
e Atask that came up on numerous
homeworks

In [1: class SimpleCounter():

def init (self):
self.counts = {}

def update(self, iterable):
for thing in iterable:
if thing not in self.counts:
self.counts[thing] = 0
self.counts[thing] = self.counts[thing] + 1

def repr (self):
return str(self.counts)

In []1: sc = SimpleCounter()
sc.update("bananarama")
print(sc)

e Let'ssubclass SimpleCounter to make something a bit more aesthetically
pleasing
e We'llredefine repr ,but init andupdatedon't needtochange

In []: class PrettyCounter(SimpleCounter):
def repr (self):

ret = []
for item, count in self.counts.items():
ending = "s" if count > 1 else ""

ret.append("I found '{}' {:>2} time{}".format(item, count, ending

return "\n".join(ret)

In []: pc = PrettyCounter()
pc.update("bananarama")
pc.update("ana, my nana, ate a banana")
print(pc)

e Asyou may have discovered, there's a similar Counterinthe collections
module:

In [1: from collections import Counter
cc = Counter()
cc.update("bananarama")
print(cc)

Nothing magic about the "official" Counter - it works just like ours!

Practical example: Tree data

e Atreeisageneral datastructure in which items (called nodes) are arranged
hierarchically
e Thetree begins ata root node

e All other nodes have exactly one parent
¢ A node cantherefore have O or more children

In [1: # The class to represent a <Node> is not too complicated
class Node():

def init (self, name):
self.name = name
self.parent = None
self.children = []

def repr (self):
return self.name

In [1: # The class to represent a <Tree> is more involved (it does most of the work)

class Tree():

def init (self,):
" g dictionary to map node names to nodes in the tree """
self.nodes = {}

def get node(self, name):
""" fetch an existing node by name, or create it if new """
if name not in self.nodes:
self.nodes[name] = Node(name)
return self.nodes[name]

def populate(self, relationships):
""" add parent/child relationships to the tree """
for parent, child in relationships:
pnode = self.get node(parent)
cnode = self.get node(child)
cnode.parent = pnode
pnode.children.append(cnode)

In [1: relationships = [
[Ilthingll’ ||VehiC'Lell]'
["thing", "animal"],

["vehicle", "plane"],
["vehicle", "train"],
["vehicle", "automobile"],

["animal"”, "mammal"],
["mammal", "cat"],
["mammal”, "cow"],

In [1: my tree = Tree()
my tree.populate(relationships)

In [I: for name, node in my tree.nodes.items():
print(node)
print(" parent :", node.parent)
print(" children :", node.children)

Challenges

e Add amethodto Tree calledget root that will find and return the tree's root
node (hint: in a properly defined tree, the root is the only node that doesn't have
a parent).

e Add amethodto Tree called get leaves thatwill find and return the tree's
leaf nodes (hint: a leaf is a node that doesn't have any children of its own).

e (Harder) Add amethod to Tree called get 1lineage. This function should take
the name of a node as an argument and return the path from the root of the tree
to that node. For examplemy tree.get lineage('cow') shouldreturn
['thing', 'animal', ‘'mammal', 'cow'] basedon the dataabove.

