
Code re-use and next steps

Eric Franzosa (franzosa@hsph.harvard.edu)

http://franzosa.net/bst273

http://franzosa.net/bst273
http://franzosa.net/bst273

Overview

• Reminders
◦ Office hours

◦ Final project hand-in

• Code re-use
◦ Making your scripts executable

◦ Making your modules findable

◦ Installing new packages from the web

• Next steps

12/18/2019 2

Types of code re-use

• Turning a one-time script into a reusable program

◦ The same way we use grep

• Importing an existing element of a script into another script

◦ The Python module approach

12/18/2019 3

Script re-use

Elements of script re-use

• By future you

◦ Making the script as generic as possible

◦ Implementing a helpful command-line interface

◦ Being able to run the script from anywhere

• For others

◦ Publishing the script online (as a public Github repository or Python package)

◦ Producing a “manual” to document the script (e.g. a README.txt file)

◦ Advertising your script

12/18/2019 5

Finding a script

• So far, we’ve focused on running scripts
that are present in our current working
directory (dir2 currently)

• We can directly run our script on
data2.txt from the working directory

◦ python script.py data2.txt

• We can run the script on data1.txt using
parent directory syntax:

◦ python script.py ../dir1/data1.txt
(Mac/Linux style)

◦ python script.py ..\dir1\data1.txt
(Windows style)

12/18/2019 6

bob

dir1 dir2 config.txt

data1.txt data2.txt script.py

home

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjplpOZj6TdAhWniOAKHSBDAjcQjRx6BAgBEAU&url=https://icons8.com/icon/2828/open&psig=AOvVaw11G3M0EvN3sZKRVnNDZLi2&ust=1536245635411148
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwipmIuwj6TdAhXuc98KHTIfAI0QjRx6BAgBEAU&url=https://www.iconbros.com/icons/ib-le-new-file&psig=AOvVaw2TxY5T_FXbemf7DdSHd7lu&ust=1536245699430427
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjplpOZj6TdAhWniOAKHSBDAjcQjRx6BAgBEAU&url=https://icons8.com/icon/2828/open&psig=AOvVaw11G3M0EvN3sZKRVnNDZLi2&ust=1536245635411148
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjplpOZj6TdAhWniOAKHSBDAjcQjRx6BAgBEAU&url=https://icons8.com/icon/2828/open&psig=AOvVaw11G3M0EvN3sZKRVnNDZLi2&ust=1536245635411148
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwipmIuwj6TdAhXuc98KHTIfAI0QjRx6BAgBEAU&url=https://www.iconbros.com/icons/ib-le-new-file&psig=AOvVaw2TxY5T_FXbemf7DdSHd7lu&ust=1536245699430427
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwipmIuwj6TdAhXuc98KHTIfAI0QjRx6BAgBEAU&url=https://www.iconbros.com/icons/ib-le-new-file&psig=AOvVaw2TxY5T_FXbemf7DdSHd7lu&ust=1536245699430427
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwipmIuwj6TdAhXuc98KHTIfAI0QjRx6BAgBEAU&url=https://www.iconbros.com/icons/ib-le-new-file&psig=AOvVaw2TxY5T_FXbemf7DdSHd7lu&ust=1536245699430427
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjplpOZj6TdAhWniOAKHSBDAjcQjRx6BAgBEAU&url=https://icons8.com/icon/2828/open&psig=AOvVaw11G3M0EvN3sZKRVnNDZLi2&ust=1536245635411148

Finding a script

• We could also move to dir1 and call
our script from there with the same
style of parent directory syntax:

◦ python ../dir2/script.py data1.txt
(Mac/Linux style)

◦ python ..\dir2\script.py data1.txt
(Windows style)

12/18/2019 7

bob

dir1 dir2 config.txt

data1.txt data2.txt script.py

home

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjplpOZj6TdAhWniOAKHSBDAjcQjRx6BAgBEAU&url=https://icons8.com/icon/2828/open&psig=AOvVaw11G3M0EvN3sZKRVnNDZLi2&ust=1536245635411148
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwipmIuwj6TdAhXuc98KHTIfAI0QjRx6BAgBEAU&url=https://www.iconbros.com/icons/ib-le-new-file&psig=AOvVaw2TxY5T_FXbemf7DdSHd7lu&ust=1536245699430427
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjplpOZj6TdAhWniOAKHSBDAjcQjRx6BAgBEAU&url=https://icons8.com/icon/2828/open&psig=AOvVaw11G3M0EvN3sZKRVnNDZLi2&ust=1536245635411148
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjplpOZj6TdAhWniOAKHSBDAjcQjRx6BAgBEAU&url=https://icons8.com/icon/2828/open&psig=AOvVaw11G3M0EvN3sZKRVnNDZLi2&ust=1536245635411148
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwipmIuwj6TdAhXuc98KHTIfAI0QjRx6BAgBEAU&url=https://www.iconbros.com/icons/ib-le-new-file&psig=AOvVaw2TxY5T_FXbemf7DdSHd7lu&ust=1536245699430427
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwipmIuwj6TdAhXuc98KHTIfAI0QjRx6BAgBEAU&url=https://www.iconbros.com/icons/ib-le-new-file&psig=AOvVaw2TxY5T_FXbemf7DdSHd7lu&ust=1536245699430427
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwipmIuwj6TdAhXuc98KHTIfAI0QjRx6BAgBEAU&url=https://www.iconbros.com/icons/ib-le-new-file&psig=AOvVaw2TxY5T_FXbemf7DdSHd7lu&ust=1536245699430427
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjplpOZj6TdAhWniOAKHSBDAjcQjRx6BAgBEAU&url=https://icons8.com/icon/2828/open&psig=AOvVaw11G3M0EvN3sZKRVnNDZLi2&ust=1536245635411148

Finding a script

• If we’re working in dir1 we could also
call the script by its absolute path

◦ This doesn’t require knowing where the
script is relative to us

• On Mac:
◦ python /home/bob/dir2/script.py data1.txt

• On Windows:
◦ python C:\home\bob\dir2\script.py data1.txt

12/18/2019 8

bob

dir1 dir2 config.txt

data1.txt data2.txt script.py

home

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjplpOZj6TdAhWniOAKHSBDAjcQjRx6BAgBEAU&url=https://icons8.com/icon/2828/open&psig=AOvVaw11G3M0EvN3sZKRVnNDZLi2&ust=1536245635411148
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwipmIuwj6TdAhXuc98KHTIfAI0QjRx6BAgBEAU&url=https://www.iconbros.com/icons/ib-le-new-file&psig=AOvVaw2TxY5T_FXbemf7DdSHd7lu&ust=1536245699430427
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjplpOZj6TdAhWniOAKHSBDAjcQjRx6BAgBEAU&url=https://icons8.com/icon/2828/open&psig=AOvVaw11G3M0EvN3sZKRVnNDZLi2&ust=1536245635411148
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjplpOZj6TdAhWniOAKHSBDAjcQjRx6BAgBEAU&url=https://icons8.com/icon/2828/open&psig=AOvVaw11G3M0EvN3sZKRVnNDZLi2&ust=1536245635411148
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwipmIuwj6TdAhXuc98KHTIfAI0QjRx6BAgBEAU&url=https://www.iconbros.com/icons/ib-le-new-file&psig=AOvVaw2TxY5T_FXbemf7DdSHd7lu&ust=1536245699430427
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwipmIuwj6TdAhXuc98KHTIfAI0QjRx6BAgBEAU&url=https://www.iconbros.com/icons/ib-le-new-file&psig=AOvVaw2TxY5T_FXbemf7DdSHd7lu&ust=1536245699430427
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwipmIuwj6TdAhXuc98KHTIfAI0QjRx6BAgBEAU&url=https://www.iconbros.com/icons/ib-le-new-file&psig=AOvVaw2TxY5T_FXbemf7DdSHd7lu&ust=1536245699430427
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjplpOZj6TdAhWniOAKHSBDAjcQjRx6BAgBEAU&url=https://icons8.com/icon/2828/open&psig=AOvVaw11G3M0EvN3sZKRVnNDZLi2&ust=1536245635411148

Finding a script

• This gets really old, really fast

• You will be tempted to simply copy scripts to the current working directory

◦ e.g. When starting a new project

• There are a number of problems with this approach

◦ You wind up with many script copies floating around

◦ New features aren’t back-propagated to old versions

◦ Still not helpful for executing the script in child folders of the project

12/18/2019 9

A better way: The system PATH

• PATH is an environment variable

◦ Just like a Python variable, it’s a programming structure for storing data

◦ Environment variables “belong” to your Operating System, not any single script

◦ We saw an example during command-line review with $HOME

• PATH is a list of locations that your operating system searches through to find
a program requested from the command line

◦ $ program

◦ Search through PATH and execute the FIRST matching option you find

◦ Not required to run program from the current directory, even if present

 Use $./program for that

12/18/2019 10

A better way: The system PATH

• Keep your scripts in one (or a few) centralized locations

• Add those locations to the PATH

• Works for repositories as well

• Mechanics are slightly different on Mac (and Linux) vs. Windows

12/18/2019 11

PATH on Mac/Linux

PATH on Mac/Linux

• Execute: echo $PATH to see your current settings
◦ /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/gam
es:/snap/bin:/home/efranzosa/hg/hclust2/:/home/efranzosa/hg/zopy/scripts/:/home/efranz
osa/hg/breadcrumbs/breadcrumbs/scripts:/home/efranzosa/.local/bin:/home/efranzosa/.lin
uxbrew/bin:/home/efranzosa/hg/metaphlan2

• What you end up with is a colon-delimited list of absolute file paths

• We can clean it up with a command-line chain…

• Execute: echo $PATH | sed "s/:/\n/g"

◦ /usr/local/sbin
◦ /usr/local/bin
◦ /usr/sbin
◦ /usr/bin
◦ /sbin
◦ /bin
◦ …

12/18/2019 13

PATH on Mac/Linux

• We can modify the path with the export command

◦ $ export PATH="$PATH:/some/other/location"

• In Mac/Linux (bash) command-line syntax, this says, “set PATH equal to
everything in PATH plus /some/other/location”

• Note, the above syntax means that your new location will be searched last

◦ An existing program in PATH with the same name will be used first

◦ Hence, this syntax is used more often (despite looks less intuitive):

 $ export PATH="/some/other/location:$PATH"

12/18/2019 14

PATH on Mac/Linux

• These changes will be lost when you start a new Terminal

• To make the changes permanent, put them in your ~/.bashrc file

◦ .bashrc stands for “bash read config”

◦ Lives in your home folder (~); stores settings for command-line work

◦ Because this file begins with ., it is hidden by default

• Add the “export PATH” command from the previous slide to the end of your
.bashrc file to make this addition permanent

◦ Then restart the Terminal or execute: $ source ~/.bashrc to update your settings

◦ You can now execute scripts in /some/other/location from anywhere

◦ e.g. $ script.py

12/18/2019 15

PATH on Mac/Linux

• Note, when we run Python scripts from the Terminal like this

◦ $ python script.py

• We are actually calling the python program, which is located in the PATH,
with the name of the script as an argument

• To directly execute a script:

◦ $ script.py

• It must begin with a special line of text called a “shebang”:

◦ #!/usr/bin/python (OR) #!/usr/bin/env python

◦ You may have noticed this in the homework scripts

12/18/2019 16

File permissions on Mac/Linux

• If you get “Permission denied,” tell the system it’s OK to execute this file:

◦ $ chmod u+x /some/other/location/script.py

• Files on Mac and Linux computers have a special set of permissions

◦ (r)eadable – can look at the file or folder

◦ (w)ritable – can modify/delete the file or folder

◦ e(x)ecutable – can execute the file as a program

• These permissions are stratified over three types of people

◦ (u)ser – you

◦ (g)roup – people in your working group (other than you)

◦ (o)thers – everyone else in the universe

• Execute: $ man chmod to learn more about these options

12/18/2019 17

File permissions on Mac/Linux

• When you execute ls -l, files are listed along with their permissions
◦ total 381K

◦ drwxrwxr-x 4 efranzosa huttenhower_lab 57 May 31 2016 build

◦ drwxrwxr-x 2 efranzosa huttenhower_lab 123 Aug 9 2016 dist

◦ drwxrwxr-x 2 efranzosa huttenhower_lab 107 Jun 21 2016 examples

◦ drwxrwxr-x 7 efranzosa huttenhower_lab 343 Sep 14 2017 humann2

◦ -rw-rw-r-- 1 efranzosa huttenhower_lab 1.2K May 28 2016 LICENSE

◦ drwxrwxr-x 2 efranzosa huttenhower_lab 188 May 31 2016 humann2.egg-info

◦ -rw-rw-r-- 1 efranzosa huttenhower_lab 1.2K Aug 26 2016 MANIFEST.in

◦ -rw-rw-r-- 1 efranzosa huttenhower_lab 16K May 3 2017 history.md

◦ -rwxrwxr-x 1 efranzosa huttenhower_lab 1017 Jul 6 2016 readme.md

◦ -rw-rw-r-- 1 efranzosa huttenhower_lab 27K Oct 26 2017 setup.py

◦ -rw-rw-r-- 1 efranzosa huttenhower_lab 201 Aug 9 2016 counter.txt

◦ -rw-rw-r-- 1 efranzosa huttenhower_lab 2.2K Sep 7 2017 bitbucket-pipelines.yml

• The initial string of chars indicates if the file is a directory (d) or not (-)
followed by the rwx permissions for you, group, and others

 12/18/2019 18

PATH on Mac/Linux

• If you ever have any doubt about which script you’re executing, or where it
lives, you can run:

◦ $ which script.py

• This will return the first match to script.py in your PATH (i.e. the one that
would be executed if you just ran $ script.py)

◦ /some/other/location/script.py

12/18/2019 19

PATH on Windows

PATH on Windows

• Execute: echo %PATH% to see your current settings
◦ C:\Program Files\PuTTY\;C:\Program Files (x86)\Gow\bin;C:\Program
Files\Git\cmd;C:\WINDOWS\system32;C:\WINDOWS;C:\WINDOWS\System32\Wbem;C:\WINDOWS\Syste
m32\WindowsPowerShell\v1.0\;C:\WINDOWS\System32\OpenSSH\;C:\Test;C:\Users\Eric
Franzosa\AppData\Local\atom\bin;C:\ProgramData\Anaconda2;

• What you end up with is a semicolon-delimited list of absolute file paths

• We can clean it up with a command-line chain… (if you have gow installed)

• Execute: echo $PATH | sed "s/;/\n/g"

◦ C:\Program Files\PuTTY\
◦ C:\Program Files (x86)\Gow\bin <- note the presence of Gow here!
◦ C:\Program Files\Git\cmd
◦ C:\WINDOWS\system32
◦ C:\WINDOWS
◦ C:\WINDOWS\System32\Wbem
◦ …

12/18/2019 21

PATH on Windows

• Editing the PATH is actually somewhat easier on
Windows vs. Mac/Linux

• On Windows 10, search for “edit environment
variables” and click the first hit

• If you need to find this location manually (or on
other versions of Windows) it’s usually under…

◦ Control Panel > System > Advanced System Settings >
Edit Environment Variables (or something similar)

12/18/2019 22

PATH on Windows

• You’ll see a Window like this listing all
environment variables on your computer

• The ones in the top panel belong to you

• The ones in the bottom panel belong to
the system (OR) all users

◦ Relevant in “install for all users” dialogs

• Select your “Path” and click “Edit”

12/18/2019 23

PATH on Windows

• You can now simply browse for the
location(s) that you want to add

• Then click OK to save and leave this
window and OK again to leave the
previous window

12/18/2019 24

PATH on Windows

• While it’s still good practice to include shebangs (#!) in Python code you write
on Windows, Windows doesn’t understand these by default

• Instead, if you execute a Python script on Windows, it will open the script in
your editor of choice (e.g. Atom)

• To avoid this, you need to use the Windows “open with” menu and set .py
files to always open with python.exe

◦ Located in your Anaconda3 folder

• This is not a perfect solution; I need to investigate it further…

12/18/2019 25

Module re-use

Module re-use

• What if I don’t want to re-run a whole script, but rather want to use some
part of it (e.g. a function) in another script?

• This is where modules come in

12/18/2019 27

Module concepts

12/18/2019 28

• The following example assumes I have two Python files in the same folder
◦ script.py is a new script I am working on

◦ module.py is some existing code that I want to re-use

directory

module.py script.py

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjplpOZj6TdAhWniOAKHSBDAjcQjRx6BAgBEAU&url=https://icons8.com/icon/2828/open&psig=AOvVaw11G3M0EvN3sZKRVnNDZLi2&ust=1536245635411148
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwipmIuwj6TdAhXuc98KHTIfAI0QjRx6BAgBEAU&url=https://www.iconbros.com/icons/ib-le-new-file&psig=AOvVaw2TxY5T_FXbemf7DdSHd7lu&ust=1536245699430427
https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwipmIuwj6TdAhXuc98KHTIfAI0QjRx6BAgBEAU&url=https://www.iconbros.com/icons/ib-le-new-file&psig=AOvVaw2TxY5T_FXbemf7DdSHd7lu&ust=1536245699430427

Module concepts

12/18/2019 29

an approximation of pi
pi = 3.14

area of a circle
def area(r):
 return pi * r ** 2

first few primes
primes = [2, 3, 5, 7, 11]

import module

print(module.pi)

$ python script.py

script.py (open in Atom) module.py (open in Atom) (a terminal)

3.14

“module” is a namespace:
a collection of previously

defined objects
(variables, functions, etc.)

We request individual
objects using “.” syntax

Module concepts

12/18/2019 30

an approximation of pi
pi = 3.14

area of a circle
def area(r):
 return pi * r ** 2

first few primes
primes = [2, 3, 5, 7, 11]

from module import area, pi

print(pi)
print(area(2))

$ python script.py

script.py (open in Atom) module.py (open in Atom) (a terminal)

3.14
12.56

We can also import specific
variables/functions from a

module into the main
namespace as a comma-

separated list.

Module concepts

12/18/2019 31

an approximation of pi
pi = 3.14

area of a circle
def area(r):
 return pi * r ** 2

first few primes
primes = [2, 3, 5, 7, 11]

say hello
print(“Hello, World!”)

import module

print(module.pi)

$ python script.py

script.py (open in Atom) module.py (open in Atom) (a terminal)

“Hello, World!”
3.14

Module code is
executed when it’s

imported. This will cause
“Hello, World!” to print

before pi.

Module concepts

12/18/2019 32

an approximation of pi
pi = 3.14

area of a circle
def area(r):
 return pi * r ** 2

first few primes
primes = [2, 3, 5, 7, 11]

say hello in script mode
if __name__ == “__main__”:
 print(“Hello, World!”)

import module

print(module.pi)

$ python script.py

script.py (open in Atom) module.py (open in Atom) (a terminal)

3.14

We can use a special
conditional to indicate
that some code should
only be run when the

module is run as a
script!

(We’ll come back to this

next week)

Module concepts

12/18/2019 33

an approximation of pi
pi = 3.14

area of a circle
def area(r):
 return pi * r ** 2

first few primes
primes = [2, 3, 5, 7, 11]

say hello in script mode
if __name__ == “__main__”:
 print(“Hello, World!”)

$ python module.py

module.py (open in Atom) (a terminal)

“Hello, World!”
This module is just a

Python script and can
also be executed.

Finding modules

12/18/2019 34

• When you include a line like “import module” in a Python script, Python
first looks for a file called module.py in the current working directory

◦ Note that this is different from how the system searches for programs

• Failing that, it then looks to a system variable called the PYTHONPATH

◦ Very similar to the system PATH: a list of locations to search to find Python modules

• Finally, it searches through a number of other locations specified by your
particular Python installation

◦ You can see the full list with:

 import sys
 print(sys.path)

PYTHONPATH on Mac/Linux

• You can manipulate PYTHONPATH exactly as we manipulated PATH

12/18/2019 35

PYTHONPATH on Windows

• You can manipulate PYTHONPATH exactly as we manipulated PATH

• However, PYTHONPATH may not be an existing environment variable on your
system (Anaconda does not define one by default)

• You can use the “New…” option to create PYTHONPATH, then populate it
using the methods we used for PATH

12/18/2019 36

Importing with . syntax

12/18/2019 37

• Let’s say you’ve created a bunch of useful functions in a bunch of useful
scripts that you want to organize (and maybe share) as one module

◦ Saved in a folder called python_stuff

• Saving python_stuff as a repository is a good start

• Add an empty file to python_stuff called __init__.py

• This will allow you to do things like

◦ import python_stuff.stats_stuff

◦ from python_stuff.stats_stuff import my_t_test

• Helps to avoid collisions with existing Python packages

Getting new scripts
and modules

Method 1: manually

• Clone a Python repository from Github

• Add the newly created folder to your PATH and PYTHONPATH

• Many repositories will contain subfolders for scripts and module code

◦ The script folder goes in PATH

◦ The module folder, which may be called src/ or have the same name as the repository
itself, goes in PYTHONPATH

12/18/2019 39

Method 2: setup.py

• Clone a Python repository from Github

• Execute the included setup.py file

◦ python setup.py install

◦ python setup.py install --user (if you don’t have admin rights)

• A special Python “installer” that will, among other things, add scripts to the
PATH and make module code import-able

• May also compile non-Python code components

12/18/2019 40

Method 3: pip

• Download and install with one command

◦ pip install package

• Makes an effort to satisfy Python dependencies

◦ For example, if package itself imports package2

• Packages come from pypi.org, the Python Package Index

• 100Ks of packages available

12/18/2019 41

Method 4: conda

• Download and install with one command

◦ conda install package

• Makes an effort to satisfy Python and non-Python dependencies

◦ For example, if package itself imports package2 and calls other programs

• Rapidly becoming the preferred way to install Python software

• Graphical interface to conda is bundled with Anaconda

◦ Anaconda Navigator

12/18/2019 42

Wrap-up

Learning to Program

• Why do it?

◦ Make easy tasks easy

◦ Make hard tasks possible

◦ Improve accuracy and efficiency in your work

◦ It’s empowering!

• What does it take?

◦ Learn to identify problems that computers can solve

◦ Learn to describe those problems in a way that computers can understand

◦ Learn a programming language to translate those descriptions into code

12/18/2019 44

How to keep learning

• Take additional courses (we’ll talk about a few)

• Read additional books (we’ll talk about a few)

• Read/watch videos online (we’ll suggest some places to look)

• Practice, practice, practice

12/18/2019 45

Learning through coursework

• A few different types of courses will be accessible with your new coding skills

• Computer science

◦ Theory of computing, algorithms, data structures

◦ Practical applications: why is ‘Bob’ in dict faster than ‚Bob‛ in list?

• Software engineering

◦ Best practices for making code that will be used more than once

◦ Documenting, testing, working as a team

• Applied computing

◦ Using computers to solve practical problems

◦ Bioinformatics, statistical computing, data science

12/18/2019 46

Classes at HSPH

• BST 234: Introduction to Data Structures and Algorithms

◦ Spring with Christoph Lange and Curtis Huttenhower

◦ Data structures and computer algorithms for statistical computing

• BST 267: Introduction to Social and Biological Networks

◦ Fall 2 with Jukka-Pekka Onnela

◦ Uses the Python NetworkX module

• BST 262: Computing for Big Data

◦ Fall 2 with Christine Choirat

◦ Methods and best practices for programming against big data (in R or Python)

12/18/2019 47

Classes outside of HSPH

• CS 50: Introduction to Computer Science (Harvard University)

◦ Very broad introduction to topics in computer science

◦ Explores facets of a number of different programming languages, including Python

◦ Also available online (via Edx)

• 6.009: Fundamentals of Programming (MIT)

◦ Offered in Fall and Spring

◦ Expands on 6.0001, Intro to Programming in Python (~this course)

12/18/2019 48

Books

12/18/2019 49

Online materials

• https://learnpythonthehardway.org/

◦ Another online textbook

• http://www.learnpython.org/

◦ Interactive Python tutorials (similar to our Juptyer notebooks)

• https://www.reddit.com/r/learnpython/

◦ A subreddit devoted to learning Python in particular

• https://stackoverflow.com/

◦ Questions and answers for computing and programming

• https://www.youtube.com/user/Computerphile

◦ Videos on all sorts of topics in computing

12/18/2019 50

https://learnpythonthehardway.org/
http://www.learnpython.org/
https://www.reddit.com/r/learnpython/
https://www.reddit.com/r/learnpython/
https://www.reddit.com/r/learnpython/
https://stackoverflow.com/
https://www.youtube.com/user/Computerphile
https://www.youtube.com/user/Computerphile

Websites that will give you problems to solve

• http://www.pythonchallenge.com/

◦ Old, but very Python-focused

• https://projecteuler.net/

◦ Math puzzles that require coding to solve

• http://rosalind.info/

◦ Bioinformatics problems that require coding to solve

12/18/2019 51

http://www.pythonchallenge.com/
http://www.pythonchallenge.com/
https://projecteuler.net/
https://projecteuler.net/
http://rosalind.info/about/
http://rosalind.info/about/

Practice, Practice, Practice

• The best way to keep developing coding skills is to keep using them

• If you encounter a computing problem, try to solve it with Python

◦ Works especially well for tasks in data analysis or organization

◦ Or anything where you think “I wish I could automate this”

• When you get stuck, research the problem online

• Once you’re over the initial learning curve, this is the best way to learn

12/18/2019 52

fin

