Lecture 9: Distributions to Excite You: Power Law and Benford's Law

1.Power law. “Frequent events small/ rare events big.”

A power law is an empirical relation between Y, usually the frequency of an event —# of times it occurs -- and
S, which measures size of the event: Y= B S™ with a fixed power a, and constant B. The term power refers to the
relation between Y and S via powers: a could be 2 so relation is 1/quadratic. Taking In, power law is a straight line
betweenInYandInS: InY=InB-alInS. Differentiating we have dInY/dInS = - a (constant elasticity relation).
Note you can also write relation as LnS =-1/aln Y -1/a In B.

Big events rare/small events frequent is not vacuous. Normal distribution has most observations around the
mean and is symmetric wrt size: large and small and big values have equal representation — human height fits normal.
Uniform distribution has equal likelihood of events by size— throwing dice 6 comes up as often as 1.

Another way to describe power law is by relating rank of object by size, with rank as measure of where you are
on a distribution function of objects. You are 1%, 2", 3" ... nth in ordering. Rank cities by population and you have a
power law relation known as ZIPF’S LAW (named after George Zipf (Harvard, Human Behavior and the Principle of
Least Effort (1949)) between population size/ frequency S to the rank R of the object: S = BR™, where rank goes from
1 for biggest to n for nth on list. Note b = 1/a in power law form. Krugman claimed that Zipf law holds for US cities
with -1 coefficient When a is 1, the power law is: Size times Rank = constant.: SR=B or log S =log B -log R

Eliminate the scaling factor B by division of the cities by rank over the next lower rank gives

Size (City N+ 1)/Size (City N) = (N+1)/N  Size ( City N) /Size (City 1)

City Size (2)/City Size (1) =" City Size (2)/City Size (1) ="

City Size (3)/City Size (2) =2/3 City Size (3)/City Size (1)=1/3

City Size (4)/City Size (3) =3/4 City Size (4)/City Size (1) =1/4

City Size (5)/City Size (4) = 4/5 City Size (5)/City Size (1) =1/5
US Cities in 2015 pop millions Ratio of largest Predicted Ratio
1. NYC 8.6 1.0 1.0
2 LA 4.0 0.47 0.5
3, Chicago 2.7 0.31 0.33
4. Houston 23 0.27 0.25
5/6 Philadelphia/Phoenix 1.6 0.19 0.20
22/23 Washington/Boston 0.7 0.08 0.04
But neither urban area of China's cities in 2010 (excluding HK) nor UK cities fit

pop millions Ratio to Larger Predicted Ratio pop millions Ratio to Larger Predicted Ratio

1. Shanghai 223 1.0 1.0 London 7,200 1.0 1.0
2 Beijing 19.3 0.87 0.50 Birmingham 992 0.14 0.50
3 Guangzhou 11.1 0.50 0.33 Leeds 720 0.10 0.33
4. Tianjin 11.1 0.50 0.25 Glasgow 560 0.08 0.25
5. Shenzhen 10.4 0.47 0.20 Sheffiel 512 0.07 0.20

We can also look at the power law in terms of the number of cities with different sizes in bins,

us China United Kingdom
>8 million 1 > 12 million 2 >7.2 1
3 -8 million 1 9-12 million 4 3.6t07.2 0
2 -3 million 2 6-9 million 6 1.8t0 3.6 0
1to2 million 5 30-6 19 9t0 1.8 1
37t0 1.0 40 2 -3 16 45t0.9 5

<45 134 1-2 88 <45 60

Cities definition depends on political boundaries. SMSAs in US looks quite different.

Pareto’s Law is economics' famous power law where size is income. Pareto law says that upper tail of income
distribution fits power law with coefficient that produces thicker tail than normal distribution. But Pareto wrote this as
function of cumulative distribution, not as frequency:



P(S > s) = s* — the probability that people have incomes above s — is a power function of the value of's.
The cumulative distribution is 1- s™, which is the proportion of people below s in the ranking of income.
The density P(S = s) is the derivative of cumulative distribution: (K)s™™" (recall calculus dx"= nx"")

Pareto’s estimated k led him to claim that 20% always hold 80% of wealth. WJ Reed claims power laws at both ends of
distribution (http://phys.ubbcluj.ro/~zneda/edu/mc/pareto.pdf) but hard to measure income at lower tail. For upper tail
check Forbes' top billionaires 2019. You can find billionaires list for other years and see how they have fared. How did

Forbes estimate the wealth of these folk? Estimates for China from Hurun Foundation differ from Forbes. Could #
billionaires better measure of inequality in a country than widely used Gini coefficients?

No. Name Net worth @‘ Age Nationali mulce(s) of wealth Number and combined net worth of billionaires by yearl=0l
Year Number of billionaires Group's combined net worth

1= | Jeff Bezos §131 bilion 39 | BE United States | Amazon 2019 2,153 $8 7 trillion
2018 2,208 $9.1 trillion
2= | Bl Gates $96.5 billion A 63 | B United States | Microsoft 2017 2,043 $7.7 trillion
2016 1,810 $6.5 trillion
d=| Warren Buffett $625kiliony | 88 | MES Unied States | Berkshire Hathaway 2015071 1,826 $7.1 trillion
201451 1,645 $6.4 trillion
4= | Bemard Amautt $76 billion A 10 I Imﬂ m 2013152 1,426 $5.4 trillion
2012 1,226 $4.6 trillion
5 | Carlos Sim $6dbiliony | 79 | pfMexco | América Movi, Grupo Carso 2011 1210 $4.5 trilion
2010 1,011 $3.6 trillion
6= | Amancio Ortega §62.7 billon ¥ 82 : Spain W' Zﬂ 2009 793 $2.4 trillion
2008 1,125 $4 4 trillion
i il E= () ; 2007 946 $3 5 trillion
TA | Lamy Elison $62.5 billion A 14 | B United States | Oracle Corporation ot iy o
il i 2005 691 $2.2 trillion
8Y | Mark Zuckerberg $623biliony | 34 | BEE United States | Facebook s — o
; i BE= () 2003 476 $1.4 trillion
9A | Michael Bloomberg |  $55.5 bilion A 17 | B United States | Bloomberg LP. — — —
il i 2001 538 $1.8 trillion
104 | Lamy Page §508bilion 4 | 45 | BEE United States | Alphabet Inc. p— - oo

Source: Forbes.[71l51][50][52]

Power laws have THICK tails that could be so thick that the distribution has NO second moment/variance. In such
distributions (a < 3 for Y=S™) you can calculate an empirical variance but theoretical variance is infinite. Power laws
are not the only way to represent data with a long tail. The log-normal becomes more power-law like as the standard
deviation increases. Exponential can also have a long tail. But In normal and exponential have thinner tails than power
law. Can add another parameter to thicken the tail -- stretched exponential.
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Power laws or power law type relations are found in all sorts of data. See AClauset, C Rohilla Shalizi, M. E. J.
Newman http://arxiv.org/abs/0706.1062 — a paper which has the most mentions of power law in any paper: the number
of power law mentions in a paper follows as power law!. Anything that fits lots of phenomenon deserves attention.
Power laws are SCALE INVARIANT: distribution does not change with units/scale of variable. Take Y=S".

Measuring S in AS units affects the constant but nota :Y=4"S" so InY =-aln A -a InS. Note scale invariance deserves
attention since it raises possibility that you can learn about the rare events from frequent events.

Kauffman, Bak, Gell-Mann argue that power laws are the signature of complex adaptive systems that lead to a state
of self-organized criticality.



KEY FACT: PARETO , ZIPEF AND POWER LAW ARE THE SAME

Lada Adamic shows that Pareto and Zipf are alternative cumulative distribution representations of the same Power law
with independent and dependent variables reversed and key parameters transformations of each .

The Pareto distribution: P(S > s) = s* — the probability that people have incomes above s is a power function of the
value of s. The cumulative distribution is 1- s is the proportion of people below s in the ranking of income (ie
cumulative distribution is position/rank in a distribution). The frequency/density is P(S = s) ks®*V .
Pareto, Zipf and power laws are the same fat-tailed distribution, shown in different forms.

The power law linking frequency to size of objects is Y= BS™ so this is just Pareto with a =k+ 1. Since rank is
a position that reflects where the object is in the distribution, Zipf relates size to rank. When a city of size s has rank
R, then there are R cities with size >s. Rewrite Zipf in cumulative frequency/rank form as R = B ' s '®. Divide by
the total number of cities T to get R/T = (B "*/T) s ™. R/T is the proportion of cities with size > s. Thus Zipf
proportion with size > s is (B '®/T)s "'® . But the Pareto proportion with size> S is s-*. Sok = 1/b. The Zipf
coefficient is 1/ Pareto coefficient. Also, note that density for Zipf is derivative of (B "*/T)s "* = -1/b(B "*/T) s "'

Summary Table

Distribution “dependent” Measure | Right hand side measure |Coefficient for density
Power law Density Size S* -a
Pareto Upper tail cumulative  |[s* cumis 1-s™®
Density s-(k+1) - (k+1)
Zipf Size Rank/upper tail R
Rank/upper tail Size s P
Density g -1o-t -(1/b+1)

Thus all three forms represent the same power law coefficient for density a =k +1=1+ 1/b

Interesting Power Laws:

1)Global terrorism follows a power law 10 February 2005 arXiv.org/abs/physics/0502014.

Clauset and Young analyze database with of more than 19,900 terrorist events in 187 countries between 1968 and 2004
(https://en.wikipedia.org/wiki/MIPT Terrorism Knowledge Base) where at least one person was killed or injured in
some 7,088 of these events. They found that the probability of an event with a severity of x or higher was proportional
to x, where a close to two and that the distributions did not fit other "heavy-tailed" distributions like a log-normal
curve. This “means” that extreme events like September 11 are not "outliers" but part of the overall pattern of terrorist
attacks that is "scale invariant" with frequency and severity of terrorist attacks - number of deaths plus the number of
injuries - related by a power law. For more recent data see http://www.rand.org/nsrd/projects/terrorism-incidents.html;
has 40,000 incidents and http://www.start.umd.edu/gtd/, global terrorism report > 190,000 incidents.

"Unfortunately, the implications of the scale invariance are almost all negative," Clauset and Young told
PhysicsWeb. "... because the scaling parameter is less than two, the size of the largest terrorist attack to date will only
grow with time. If we assume that the scaling relationship and the frequency of events do not change in the future, we
can expect to see another attack at least as severe as September 11 within the next seven years."
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Guo W. 2019 Commonstatistical patterns in urban terrorism. R.
Soc.open sci. 6: 190645 tBy examining over 30 000 geotagged
terrorism acts over 7000 cities worldwide from 2002 to
today, the results show the following. All cities experience
attacks A that are uncorrelated to the population and separated
by a time interval t that is negative exponentially distributed
R*=0.88 with a death-toll per attack that follows a power law
distribution. The prediction parameters yield a high
confidence of explaining up to 87% of the variations in

- frequency and 89% in the death-toll data. These findings
10 13 show that the aggregate statistical behaviour of terror attacks
Acitira pox stinck d (log scilc) phcies e stk ol (o meale) are seemingly random and memoryless for all global cities
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2) Citations to Academic Papers — Golososvsky M, Solomon S. Runaway events dominate the heavy tail of citations
distributions. Eur. Phys. J. Special topics. 2012; 205: 303-311
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] F OG‘%%% ] Fig. 1. Cumulative probability distribution (cdf) of citations
5 8108 °p E to 353,268 papers published in Physical Review journals during
5 00l e, ] 1893-2003 and cited by 2003. Only PR to PR citations were
:;ﬁ Cb%ao counted. The data were adapted from Ref. [13]. The continuous
2wl \%o ] red line shows a fit with the discrete-power-law cdf (Eq.1) with
§ % v = 3.15,w = 10.2. The dashed blue line shows a fit with the

B Wk %}; E log-normal cdf (Eq.3) with = 1.15,0 = 1.42.
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3)-- Shares in Facebook posts — similar power law tail from Tsallis-Pareto.--
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0179656

RESEARCH ARTICLE

Science and Facebook: The same popularity
lawv!

4) Mandelbrot: fat tail of changes in commodity/security prices: more months with small variation than with large
variation so that transforms of variables fits a log-log curve. Is this true of all price variation? How about wages?

Power Law Relationships — Cotctcon Prices
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Mandelbrot’s (1963) analysis of monthly variations in cotton prices
during a 30 month period. The left plot shows the month by
month changes. Note how they vary; lots of small changes, and
fewer large changes. The right logarithmic graph shows the same
data is a power-law distribution, indicating the cotton

5)Does Twitter follow Power Law? —

Upper CDF of followers, Top 100 Users
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6) Clauset “Trends and fluctuations in the severity of interstate wars”Science Advances 2018:4: February 2018
“Richardson’s original analysis of interstate wars from 1820 to 1945 (32) ... argued that war sizes followed a precise
pattern, called a power-law distribution, in which the probability that a war kills x people is Pr(x) ® x—a , where a > 1 is

. “scaling” parameter and x > xmin > 0. He also argued that the timing of wars followed a simple Poisson process,
implying a constant annual hazard rate and an exponential distribution for the time between wars (24, 25). Although
Richardson’s analysis would not be considered statistically rigorous today but these patterns...(still hold).
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Fig. 2. Interstate wars sizes, 1823—-2003. The maximum likelihood power-lawvw model
of the largest-sewverity wars (solid line, a = 1.53 = 0.07 for x — Xmin — 7061) is a plau-
sible data—generating process of the empirical sewverities (Monte Carlo, pes = 0.78 = Q.03).
For reference, distribution guartiles are marked by wvertical dashed lines. Inset: Bootstrap
distribution of maxinmum likelihood parameters Prigx), with the empirical value (black line).

7)Power Law in Popular Media — Michael Tauberg
Top 500 Authors on NYT best seller list Top Songs on Billboard Hot 100 (1970-2018)
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Debating Value of power laws
1-YES Parsimonious way to describe data from distributions with a scale free structure that allows us to use
distribution at one scale to predict distribution at another and possibly learn about mechanism behind few big events
from larger sample of smaller events.

NO Curve-fitting is not understanding. Power law is ONE parametization of a distribution where big events are
rarer than small events. Other heavy tailed curves may fit better and evidence that In-normal works well until upper tail
and then the Pareto fits, but may itself fail at extreme, suggests viewing power law as descriptive of part of distribution.

NO. Estimating a in power law is dicey because so few tail observations so power law lives on shaky grounds.
Mandelbrot adds two parameters and gets a better fit for city power laws so that the first city would have size B/ (n +
const)'. But adding parameters to fit data does not lead to good generalization. And many are not scale free , so no
reason to trust extrapolations.

YES scale-freeness is intended as an idealized model, not something that precisely captures real-world networks.
Many of the most important properties of scale-free networks, they say, also hold for a broader class called “heavy-
tailed networks” to which many real-world networks may belong (these are networks that have significantly more
highly connected hubs than a random network has, but don’t necessarily obey a strict power law).

2—YES Power laws can lead to good policy. If small number cause most of problem or most of gains, focus
attention on that group. Allows us to escape from details to focus on underlying dynameics This motivates the Per



Bak/Kauffman efforts to develop Self-Organized Criticality to account for power laws.

NO General all-encompassing rules rarely tell us what to do. The only way to figure out which mechanism
causes a particular outcome is to study the details of the system. Extinctions fit power laws but cause is exogenous
(asteroid crash) rather than some rule of life, while asteroid crashes do not explain power law in city sizes and income.

3. NO Even if there are power laws, parameters may change. So you could have policies that would alter the
parameters of the power curve. Olson and Associates found that a scaling relation for the variability of Italian currency
fluctuations — lots of small swings, few large swings — had smaller coefficients when Italy was part of the European
Monetary System in the 1980s - 1990s than when it was out. Pareto parameters can differ across countries, time.

War over Interpreting Power Law Patterns: Results from Opimizing Behavior vs Random linkages (Barabasi)

LUCK OR REASON: AN ANCIENT FIGHT

The tension between randomness and opti-
mization, two apparently antagonistic ex-
planations for power laws, is by no means
new: In the 1960s Herbert Simon and Benoit
Mandelbrot have engaged in a fierce public
dispute over this very topic. Simon proposed
that preferential attachment is responsible
for the power-law nature of word frequencies.
Mandelbrot fiercely defended an optimiza-

In the context of networks today the argu-
ment titled in Simon’s favor: The power laws
observed in complex networks appear to be
driven by randomness and preferential at-
tachment. Yet, the optimization-based ideas
proposed by Mandelbrot play an important
role in explaining the origins of preferential
attachment. So at the end they were both
right.

tion-based framework. The debate spanned
seven papers and two years and is one of the

[

In An Informal Theery of the Statistical
Structure of Languages [24] Benoit
Mandelbrot proposes optimization as the

origin of power laws.

1953

Mandelbrot publishes a i
o comment on Simon’s paper [27] * 3

writing: 1959

._ # Simon's model is analytically circular...
—1

In On a Class of Skew Distribution Functions
Herbert Simon [6] proposes randomness
as the origin of power laws and dismisses
Mandelbrot's claim that power law are
rooted in optimization

[
W
W
[ ¥y |

cal objections to the model are shown to be
unfounded ”
. 19460 “35

In & 19 page response entitled
Final Note, Mandelbrot
states [29]-

...Most of Simon's (1960) reply was irrelevant.

©e

1961

Benoit This present ‘Reply’ refutes the almost

entirely new arguments introduced by Dr.

Mandelbrot in his “Final Note”... .
Y

In the creatively titled Post
Scriptum to Final Note
Mandlebrot [31] writes

My criticism has not changed since I first
had the privilege of commenting upon a
draft of Simon. & &'

1961

Benoit

Dr. Mandelbrot has proposed a new set of
objections to my 1955 models of Yule
distributions. Like earlier objections, these
are invalid. 1961 =3

Dr. Mandelbrot's principal and mathemati- | 4

The essence of Simon's lengthy
reply a year later is well e
summarized in its abstract [28].

Simon’'s subsequent Reply to
‘Final Note™ by Mandelbrot

does not concede [30]

|

R
Simon'’s final reply ends but

does not resolve the debate [32]




2. Benford's Law — a useful clue to uncovering fraud
L
There are 9 digits (and 0) in our base 10 arithmetic. Randomly select a digit, exclusive of zero, and what are the odds
the digitis 2, 7, 4, ...? Since there are nine digits, you might guess 1/9 or about 11%

Here is the distribution of leading digits from different statistical series (http://testingbenfordslaw.com/):

Digit Twitter Distance of stars |UK govt spending |Spanish cities pop | Google books one-grams
followers

1 32.62% 30.00% 29.10% 31.07% 1.128.32%

2 16.66% 14.67% 17.50% 18.02% 16.45%

3 11.80% 12.00% 12.20% 12.42% 2./13.24%

4 9.26% 10.33% 9.60% 9.18% 10.66%

5 7.63% 9.33% 8.60% 7.95% 3.17.88%

6 6.55% 5.67% 7.30% 6.57% 4.17.20%

7 5.76% 7.00% 6.10% 5/36% 5.98%

8 5.14% 7.00% 5.60% 4.95% 5.11%

9 4.56% 4.00% 4.60% 4.47% 5.16%

#records |38,670,514 300 190,379 8114 2055

min 1 4 1 5 303

max 4,706,631 3000 999,994 3,255,944 13,598.879.,452

Magnitude |6 3 5 6 10

1.What is Benford's Law of leading digits? That the digits in any set of numbers follows a logarithmic pattern, with
the first digit D having the frequency of logio (1+ 1/D) not 1/9. Simon Newcomb's 1881 paper "Note on the
frequency of use of the different digits in natural numbers". American Journal of Mathematics. 4(1/4): 39—-40) said the
probability of N being the first digit of a number was equal to log(N + 1) — log(N). There are logarithmic probabilities
for other digits as well! And similar laws for other bases. Wikipedia article is superb on the law.

Figure 1T—Benford’s Law Distribution Leading Digit

S 1 — 30.1%

2 = 17.6%

= =20 3= 12.5%
= 4 = 9.7%
= 15 5 = 7_.9%
B — 6.7%
10 7 = 5.8%
8 =5.1%
5 9 = 4.6%

o

Newcomb discovered the law in 1881 when he noticed that log table pages were grubbier around the number 1
than numbers 8 or 9 and fit the formula. But it is called Benford's Law after Frank Benford, a GE physicist
rediscovered the pattern and wrote a paper in 1938 that showed that distribution of first digits of 20,229 sets of numbers
from areas of rivers to physical constants and death rates followed the law (The law of anomalous numbers.
Proceedings of the American Philosophical Society 78, 551-572). In 1961 Roger Pinkham, Rutgers mathematician,
claimed that any general law of digits must be scale invariant (independent of units — ie log) and that it had to be
Benford's law, but Pinkham implicitly assumed that there exists a scale-invariant probability distribution on the positive
real numbers, which is not so. In 1996 Feller’s classic text An Introduction to Probability claimed that “regularity and
large spread implies Benford’s Law™ but this was wrong.

In the 1995 Ted Hill, of West Point, later Ga Tech, proved that data resulting from a mix of factors will follow
Benford’s Law, and is “absorbing™ in the sense that it causes products of numbers and other distributions that
incorporate it to obey the law as well. Benford is base and scale invariance. Hill, T.P (1995) “A statistical derivation of




the significant digit law” Statistical Science , 10(4), 354-363. Hill and Berger write that there is “No Simple
Explanation In Sight For [the] Mathematical Gem” because it arises from very different processes, sequences, product
of Random variables, mixtures of data sets, but there are ways to understand. Hill, a Vietnam veteran with an amazing
career in Army, academics, tells about his wild life in math in a memoir From Beast to Berkeley, and inadvertently got
into recent controversy for math paper on evolution.

Benford Law: FProb (D, =d;) = logp [1 B a‘_l} forall d; =1,2,...,9;
This is a probability distribution because PROBABILITY OF “D” is log,, (1 +1/D) and the sum of the probabilities

for the nine values = 1 bes logyg (1 +1/1) + log,e (1 +1/2) + logy, (1 +1/3) + ... + log,, (1 +1/9) = log,, (2 3/2 4/3 ...
9/8 10/9)= log,, 10

But this is not all. There is a formula for the 2™ digit as well!

P(D,.d)= Ylog,(1+(10k+d)") k=1to9.

s 1 6020312
Prob (D — 1) — 1 [ T T e —o01138___,
b Dy —=1) =¥ w0 ( R T 1) ©E10 1838501

whereas, given that the first digit equals 1, the (conditional) probability that st
the second digit equals 1 as well is
12 — log,, 11

=0.12556....
log,n 2 e

Probi{lly — 1Dy —1) — 1280

Prob((Dy, Dz, - . -, Dy) = (dhadla, - - ., dy))

= log;q (1 L2 (Zil lﬂ’l_fdf)-!)

But as digits go up, the probabilities — 1/9 so the first digit deviation from 1/9 is much greater than other digits:

I'he law for a set of digits 1s:

Figure I. Benford's Law First amd Second Digits Freguencies
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If first digits have different distribution, watch out! Accounting/business deviations often reflect judicious rounding,

but some may indicate manipulation — fake numbers.

2.Why does it work? The magic of log growth and stopping rules --scale and base invariance.
Take an index that starts at 1000 and has 20% growth per year 7

1000 2074 3583 1 occcurrence
1200 2449 4300 1 occurrence
1440 2986 5160 1 occurrence
1738

4 occurrences of 1 3 occurrences of 2

It keeps growing at 20% so you get 6192, 7430, 8916 and then NO DIGIT WITH 9, 10670... Alternatively, think of
addresses on a street, which go from 1, 2, ...9. On street with 4 houses, you get addresses 1,2,3, 4. If you have a

random stopping rule, always start with 1 and get 1 but may not get other digits. If you take the density of integers less
than or equal to x you get a saw-toothed pattern.

The density of inegers less than x with laading digit *1* The density of integers less than x with leading digit *3"
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To see the saw-tooth distribution
count numbers with digit 1 along the real line count numbers with LD 9 along the real line
digits ratio to all counted digits digits ratio to all digits
1 1 1of'1 1 0/1
2 1,2 172 2 02
3 1,2,3 1/3
9 1,...9 1/9 1,...9 1/9
10 2/10 10 1/10
11 3/11
19 11/19 = 5/9 89 1/89 = 1/81 ?? (.0112->.0123)
20 11/20 90 2/90
99 11/99=1/9 99 11/99
100 12/100
199 111/199 = 5/9 899 11/899 = 1/81 (.0122)
999 111/999 =1/9 999 111/999 =1/9
8999 111/8999= 1/81 (.0123)

Hill's theorem: if we repeatedly pick random entries from random distributions, the result tends towards the distribution
of Benford's law --that combinations of distributions tend towards the distribution predicted by Benford™’s law even when
the.original distributions do not [Hill1996]. This because you are picking across many scales and so this is basically a

scale free distribution —> Benford distribution.

Hill example: you pick lottery numbers from newspaper — uniform; You pick numbers of weights of people — normal

distribution; you pick number of automobile accidents — exponential??
Take the % of lead digits of each and average them and you will get Benford!




First Digits

| 2 i 4 5 6 1 & 9
Benford'sLaw  30.1% 176 125 97 79 67 58 51 46
Lottery 11% 11 11 11 11 11 11 11 11
Bell Curve 40% 13 g8 &8 7 T 6 6 5
Atomic Wig 41% 28 5 4 7 3 4 4 5

i i
0]

Benford's law

Log Distribution (Benford’s Law)

] Average of Iottery. bell curve and atomic WElﬂht The “random samples from random distributions™ theorem says that if
numbers distributions are selected at random (in a neutral way) and s;nuplesl are
talkken from each of these distributions, then the resulting data set will have

digital frequencies approaching Benford’s Law (see Figure 5).

Benford's law is legally admissible as evidence in criminal cases at the federal, state and local levels. Major
accounting firms use computer-assisted audit tools to check data since deviations from Benford’s Law should “cause
an analyst to question the validity, accuracy, or the completeness of numbers”. (Nigrini, Benford's Law: Applications
for Forensic Accounting, Auditing, and Fraud Detection. Hoboken, NJ: Wiley, 2012)

ISACA (Information Systems Audit and Control Association) tells auditors: “if the audit objective is to detect
fraud in the disbursements cycle, the IT auditor could use Benford’s Law to measure the ... leading digits in
disbursements compared to the digits’ probability. Not work well if sample is small (<100) or subject to special rules
such as thresholds and cutoffs. For instance, if a bank’s policy is to refer loans at or above US $50,000 to a loan
committee, looking just below that approval threshold gives a loan officer the potential to discover loan frauds. “
(Simkin, Mark G. “Using Spreadsheets and Benford’s Law to Test Accounting Data,” ISACA Journal, V1, 2010.

Tracking the London Interbank Offered Rate — Libor Rate -- average interest rate calculated by British Banker's
Association from rates by major London banks. (www.escholarship.org/uc/item/2p33x7dk)-- Abrantes-Metz, Villas-
Boas, and George “ use Benford second digit reference distribution to track the daily Libor over ...2005-2008 (and
find)... Why 2" digit ? First digits do not span the nine digit space. Find libor rates depart significantly from Benford....
This raises potential concerns relative to the unbiased nature of the signals coming from the sixteen banks from which
the Libor is computed and the usefulness of the Libor as a major economic indicator. integrity of prices.” In fact,
Authorities discovered that banks were falsely reporting their rates to profit from trades, or to give impression
that they were more creditworthy than they were. Libor underpins approximately $350 trillion in derivatives.

Scientific fraud in 20 falsified anesthesia papers : (Anaesthesist. 2012 Jun;61(6):543-9) papers known to
be falsified by an author were investigated for irregularities with respect to Benford's law using the x(2)-test and the Z-
test. In an analysis of each paper 17 out of 20 studies differed significantly from the expected value for the first digit
and 18 out of 20 studies varied significantly from the expected value of the second digit...

Fact and Fiction in EU-Governmental Economic Data German Economic Review Volume 12, Issue 3, pages
243-255, August 2011 To detect manipulations or fraud in accounting data, auditors have successfully used Benford's
law as part of their fraud detection processes... In the European Union (EU), there is pressure to comply with the
Stability and Growth Pact criteria. Therefore ... overnments might try to make their economic situation seem better.,,
we use a Benford test to investigate the quality of macroeconomic data relevant to the deficit criteria reported to
Eurostat by EU member states,,,Data ...by Greece shows the greatest deviation from Benford's law among all euro
states.



