
Lecture 13 – More to Know About Power Law Non-Normal Distributions and SIR Network Epidemic Models 

A Three Roads to Power Laws

1)Road 1 is to generalize Central Limit theorem (iid errors with mean/variance, then as N → infinity  distribution 
is NORMAL) – to distributions with infinite variance.  Stable distributions where CLT is special case. 
Have property that linear combination of two independently drawn copies of the variable has the same distribution.  

Three closed form representatives of stable distribution: Normal is bell-shape with mean and variance.  Cauchy is 
symmetric with such a thick tail and no mean or variance; Levy is non-negative variable – not symmetric. Being 
STABLE distributions, all three are “attractors” – if lots of random “stuff” happens end up with this distribution.

A stable distribution has four parameters: – key is stability parameter  α  (0, 2]  (∈  skewness parameter; scale 
parameter; location parameter) Stable distributions with infinite variances likely to show jumps, which fits “many 
time series appear to exhibit "discontinuities( e.g., large jumps)”  Evidence  + Generalized Central Limit Theorem 
justifies stable models in finance & economics, where data poorly described by Gaussian model, but well described 
by a stable distribution eg stock prices (Journal of Business & Economic Statistics,(Apr., 1990)). 

2) Road 2 positive feedback loops to random shocks that  push distribution toward power law  in two ways.  (Exam
type question: “Positive feedback loops always lead to discontinuous change/big jumps.”  T, F and explain

STRUCTURE A:  Stochastic/proportionate growth plus a barrier/bound (% growth + bounds) generate power law
(associated with Herb Simon in debate with Mandelbrot ).

Without barriers/bounds stochastic growth gives log-normal:  random ln/% growth –> log-normal with var 
σ2.    Rate of growth independent of initial size and variance of growth that is the same for all units – Gibrat's  law in 
economics that the proportional rate of growth of a firm is independent of its absolute size , which produces  log-
normal. -- yields equation for growth of firm (http://docentes.fe.unl.pt/~jmata/gibrat.pdf):

% change in SIZE = σ so that SIZE (t)  = (1+ σ) SIZE (t-1)–>  ln SIZE (t) = ln SIZE (t-1) + ln (1+σ)

Need something to fatten tails to go beyond log-normal. Some lower bound/friction.  Gibrat + lower bound–>  
Zipf.  This is the STEADY STATE distribution.  The bound produces “Reflected Brownian motion” – originally 
shown by Champernowne for income distribution.  Lower barrier frees “extra mass” to add to distribution's tail.

Gabaix model for cities:   Cities of different sizes have same growth rate with a constant variance.  The position of 
cities can change, but the distribution replicates itself.  LA surpasses Chicago as number 2 in US but number 2 city 
is still proportionate (½ of  the largest city) in Zipf’s law with coefficient 1.

How the barrier works: You follow the average growth rate + random component unless you are very small.  If you 
are very small you grow at 0 or at some positive value that depends on average growth and random shock.  
Moving density from the bottom pushes the distribution toward fatter tails.  All but smallest have same growth rate 
with constant variance (presumably if  “policies” matter this will no be true). 

Alternative way to see mechanism, consider fixed total population that distributes itself among cities.  With same 
% growth larger cities have greater absolute growth. Must have more small cities to maintain the fixed 
population.  City with 4M growing at 25% would add 1M so must have lots of small cities to give up 1M; and 
conversely if city with 4M declines by 25% … must have lots of small cities for people to move to.

Consider world in which  cities either double or halve every period, where P % double every period;  (1-P) = % of 
cities that halve.  This shows how the fixed  rule produces distribution (but does not allow for the variance in growth
rates)  Scale the fixed population at 1 so  2(p) + ½ (1-p) = 1.   Solving  we get p = 1/3 → cities with size 2 make up 
1/3rd; cities with size ½ made up 2/3rd of population. There are twice as many small cities as large cities.

What about next period, with the same process?  Some cities get half the population and others double.   City A of 
size 2 becomes 4 and city B of size 2 becomes 1, etc
Rank of city by size   size     Frequency

1 4 1/9
2 1 2/9
3 1 2/9
4 1/4 4/9 And next period and so on



A stable distribution by size classes after a long period of doubling/halving needs same absolute changes, which 
holds only if size classes have the same total population and fits Zipf with bins:
       SIZE   # CITIES POPULATION IN CLASS

small 40 1 40
larger 20 2 40
big 10 4 40
biggest   5 8 40

STRUCTURE B – Preferential attachment http://ccl.northwestern.edu/netlogo/models/PreferentialAttachment)

The power law story for web pages is that  new sites more likely to attach to (older) larger sites. Small # of larger 
sites will grow more rapidly than smaller/newer sites → power law. Can also explain why citations fit power law. 
https://en.wikipedia.org/wiki/Preferential_attachment  . 

But also need to model entry and exit.  A new site/paper enters and gathers some followers/citations according to 
attachment while some sites die off.  The power law is presumed to hold for internet with mixture of older and 
younger firms.  But the lifetime of sites at a moment in time is often exponential with a few long-lived sites and 
many short-lives sites with a difference < power law. Mixture of exponential and log-normal gives power law.   

Other ways to get power law: as the inverse of a function that follows a power law; as combinations of exponential;
random walk distribution of lifetime → lots of short lives, few older ones.  The different variants of preferential 
attachment suggest different processes that direct attention at different ways to affect power law distribution if, say, 
society viewed it as “too weighted” at tail for some reason – Billionaires/1% vs rest of us. 

Road 3)Through OPTIMIZING behavior that brings system to “brink” of large changes

 LOCAL INTERACTIONS AND OPTIMIZATION  --> SOC self organized criticality
System has birth/death process that moves it to border area where it is subject to risk of major disruptions, 

producing power law.  This is the P.  Bak “sandpile theory” explanation: systems naturally move to a point where 
they generate “avalanche” events.  But if then “we must also abandon any idea of detailed long-term determinism or
predictability”.  There will be Silicon Valley or an economic collapse, but you cannot predict where it occurs or 
when.   In a short period, you get few BIG EVENTS, but you never know when. There will be an epidemic or big 
car crash or traffic jam as cars follow given route and pack roads until some random event → stoppage.

Bak: “Large fluctuations ... in economics indicate an economy operating at the SOC state, in which minor 
shocks can lead to avalanches of all sizes ... there is no way one can stabilize the economy... eventually something 
different and quite unexpected  will upset ... balance ... and there will be a major avalanche somewhere else” (p 191).
 

Al Gore Paean to the Sandpile Model: “The sandpile theory – self-organized criticality – is irresistible as a 
metaphor; one can begin by applying it to the developmental stages of human life. The formation of identity is akin to a 
formation of the sandpile, with each person being unique and thus affected by events differently. A personality reaches the 
critical state once the basic contours of its distinctive shape are revealed; then the impact of each new experience 
reverberates throughout the whole person, both directly, at the time it occurs, and indirectly, by setting the stage for future 
change. Having reached this mature configuration, a person continues to pile up grains of experience, building on the 
existing base. But sometimes, at midlife, the grains start to stack up as if the entire pile is still pushing upward, still 
searching for its mature shape. The unstable configuration that results makes one vulnerable to a cascade of change.” 

The model is a cellular automata that uses nearest neighbor interactions to produce an avalanche-- lots of 
places changing.  Think of debts/ bankruptcy.  Add an extra debt:  Owe--> Owe + 1. If you hit a debt limit, you go 
bankrupt, pushing your debts to neighbors by lowering their assets.   In the diagram, numbers measure debts.  You 
drop a new debt onto the model -- 4 in the second diagram. That person can’t pay loans to neighbors, which  adds to
their debt.  They go under.  And so on.  The avalanche is defined as the number of sites that hit 0 -- go bankrupt.  

https://en.wikipedia.org/wiki/Preferential_attachment
http://ccl.northwestern.edu/netlogo/models/PreferentialAttachment


This is  a LOCAL INTERACTION MODEL in which several sites get close to an avalanche, so that “the 
next straw breaks the camels’ back”.  The model has power law:  # of Avalanches of Size in  period = (Size )-1.1

Avalanche Size # of Avalanches   
 2 .47
10 .08
100 .006

HOT (highly optimized tolerance) develops power laws from optimization.  Systems are  optimized along some 
dimensions and robust but risk failure from cascade of shocks in other dimensions.  If optimize return to investment 
hy going highly leveraged you leave open the door to catastrophe –> heavy tail of financial avalanche as in Wall 
Street implosion.

Example is  Forest fire model.   Consider the forest with trees on a grid.  Random lightning bolts cause a fire.  If a 
bolt lands on an empty space, no fire; if it lands on tree, it burns the tree, which spreads to all neighbors. The chance
of a bolt/ fire at any tree is p. #of trees that burn is inversely related to # of fires per time period in a power law: 
many small fires in which few trees burn and a few large fires. The key metric is R(p), the probability that there is a 
path across the space called a spanning cluster so that whole forest burns.  R(p) makes a dramatic transition from 
low to high values---a phase transition---at a critical value when the density of trees is about 0.59. 

 

Neat Result: Large fires more likely when few sparks. Why?  Because with few small fires, the forest gets denser 
–> one big fire. Lots of sparks →  space between trees. Carlson and Doyle explain this with model in which forester 
plants trees to optimize amount of lumber, subject to fires that burn trees.  The optimizing strategy is to plant trees in
blocks with narrow fire breaks between them to prevent fire from spreading. Smaller blocks in regions of likely fire; 
larger blocks in regions where fire is unlikely. The structure is designed to respond optimally to small shocks.  

But optimal performance in normal times risks ruinous collapse if get unlikely shock.  In an area with not many 
sparks you put up few firebreaks. The trees are close together. Unlikely spark event → forest burns down.  In area 
with lots of sparks, you put up lots of firebreaks.  Unlikely spark event happens – you are safe.  What is analogy to 
financial leveraging?

Optimization to common perturbations leads to good properties with respect to those shocks but are 
"fragile" to rare events, unanticipated changes in the environment, and flaws in the design

SIR Models of Epidemics

SIR – Classic Susceptible, Infected, Recovered model  – differential equation model.  Modified by network geometry
and mutation evolution of pathogen.  

Infections are transmitted from nodes in a network map to neighbors – local “geometry” with no long distance
links. Population of N consists of  S+I+R = N.  At outset, everyone is S but as time proceeds people will shift, first 
to I and then to R.  Scale N to 1 so get shares.  Model has two transitions:  Susceptible → Infected and Infected → 
recover.  Each infected person generates bs(t) new infected individuals per period and a fraction  k  of the infected 
group recover per period.  If average duration of infection is three periods, 1/3d of infected recovers each period 



s(t) = S(t)/N, the susceptible fraction of the population,

i(t) = I(t)/N, the infected fraction of the population, and

r(t) = R(t)/N, the recovered fraction of the population.

Thus,   ds/dt = -b s(t) i(t), where b is rate at which infected ==>  turn susceptible into infects 
     di/dt =     bs(t)i(t) – ki(t) bcs where k is the rate at which infected recover 

        
Also, ds/dt + di/dt + dr/dt =0.  Why   – bcs shares of population sum to 1

This generates:
1)The disease always dies out.  Diagram is uni-directional.  S-->I → R so if rate of infection is high, everyone gets 
infected and recovers.

2)But there is another solution in which disease dies out.  This is when  b < k –  infection is slower than recovery.  
Epidemic threshold theorem – stated in terms of R = b/v known as epidemiological parameter – get rid of 
disease without everyone getting it.

So public health policy is to reduce R... lower b and raise v. 
1. Reduce the contact rate  by self-isolation of susceptible individuals--> on line education
2. Find vaccines to create new state for susceptibles so disease cannot invade you
3. Reduce the transmissibility  by encouraging frequent hand washing and face masks.
4.  Reduce the duration of infection D with antiviral drugs



Globalization and Small World → Transportation Networks
If small world, not just local neighbors – someone far away may connect to you.  Send you email, your 

computer may get infected but not you.  But if someone from infected area comes to your block from far-away with 
disease, your neighborhood can get infected.

So linked analysis to real networks of travel – flight patterns and once infected arrives in destination can study
where they go.  Infected is a basketball fan – yikes for sports events. Infected gives talk at Harvard – shut down any 
seminars with outside speakers.  Venice fighting Black Death by quarantining ships for 40 days before passengers and
crew could go ashore during Black Death plague.  Need not know if person is infected or not. just stop all contact.  

Transportation network differs from standard measure of networks as static nodes and edges because it introduces 
time and dynamic changes into the model.  You and I have a connection and we both have lots of other connections 
but not all nodes are concurrently active.  Map shows possible roads but some may be slower than others at some 
times and faster than others.  Individuals in a social network do not interact simultaneously with all of their 
acquaintances etc. So need some sort of dynamic network/measure of mobility patterns to capture reality.

One model --The Hidden Geometry of Complex,Network-Driven Contagion Phenomena  Dirk Brockmann and Dirk 
Helbing Science 13 DECEMBER 2013 VOL 342 replaces conventional geographic distance by a measure of effective 
distance derived from the underlying mobility network.  In epidemic analysis this says, your neighbors may be 
“far away” in distance but close if there is a lot of air traffic. Also could depend on size of populations.  Boston would
be closer to NY than to Martha's Vineyard because more people come to Boston from NY than from the island. You 
“rewrite” your network to reflect transportation parameters. Many infected from planes to Boston more likely to 
create problem than small number on ferry. 

“In addition to the local dynamics, individuals travel between nodes according to a transportation equation that 
determines  effective distance from a node n to a connected node m … This concept of effective distance reflects the 
idea that a small fraction of traffic n→m is effectively equivalent to a large distance, and vice versa. The complexity 
of the spatiotemporal pattern is largely determined by the structure of the mobility component and not by the 
nonlinearities or the disease-specific, epidemiological rate parameters of the model.   

Linear relationship between effective distance and arrival time for the 2009 H1N1 pandemic (D) and the 2003 SARS 
epidemic (E). The arrival time data are the same as in Fig. 1, D and E. The effective distance was computed from the 
projected global mobility network between countries. Strong correlation between arrival time and effective distance.

Another Model Traffic-driven epidemic spreading in finite-size scale-free networks Sandro Melonia, Alex Arenasb,c, 
and Yamir Morenoc PNAS October 6, 2009 vol. 106 no. 40 16897–16902

The value of the epidemic threshold in scale-free networks depends directly on flow conditions, in particular 
on the first and second moments of the betweenness distribution given a routing protocol. Bounded delivery provokes
congestion, slowing down the spreading of the disease and setting a limit for the epidemic incidence. Nodes do not 
interact at all times t, but only when they exchange – ie have a flight –  epidemic can spread between nodes 
every time an interaction takes place.  Contagion is driven by traffic or interaction flow. If “congestion” arises, the 
number of contacts between the system elements decreases, leading to a less-efficient spreading of the disease and 
therefore to a significant reduction of the average number of infected individua  The disease-propagation process has 
two dynamical components:one intrinsic to the disease itself (β) and the other to the underlying traffic dynamics (the 
flow).



Evolution of Pathogens/Ideas in Network 
But there is another problem – pathogen is not constant. It evolves.  60% of the (approximately) 400 emerging

infectious diseases  identified since 1940 were  initially poorly adapted, poorly replicated, and inefficiently 
transmitted (S. S. Morse et al., Prediction and prevention of the next pandemic zoonosis. Lancet  (2012) and  K. E. 
Jones et al., Global trends in emerging infectious diseases. Nature (2008). So you need another dimension to 
understand/predict/find policies to deal with SIR type world. 

Pathogens often evolve in response to changing environments and medical interventions.  
Information is often modified by individuals before being forwarded.  Evolutionary adaptations can impact 

the threshold, probability, and final size of epidemics.  More elements lead to more complex model, with more 
interactions and parameters in which structural properties of the network – transportation/mobility – and the 
evolutionary adaptations of the spreading process move simple SIR to a simulation model – agent-based economics.  

One model: Risk factors for the evolutionary emergence of pathogens H. K. Alexander* and T. Day  J. R. Soc.
Interface (2010) “When first introduced to a population, a pathogen is often poorly adapted to its new host and must 
evolve in order to escape extinction. Theoretical arguments and empirical studies have suggested various factors to 
explain why some pathogens emerge and others do not, including host contact structure, pathogen adaptive pathways 
and mutation rates. Using a multi-type branching process, we model the spread of an introduced pathogen 
evolving through several strains...(with) a network-based approach to separate host contact patterns from pathogen 
transmissibility. We also allow for arbitrary adaptive pathways. These generalizations lead to novel predictions 
regarding the impact of hypothesized risk factors. 

Pathogen fitness depends on the host population in which it circulates, and the ‘riskiest’ contact distribution
and adaptive pathway depend on initial transmissibility. 

Emergence probability is sensitive to mutation probabilities and number of adaptive steps required, with the 
possibility of large adaptive steps (e.g. simultaneous point mutations or recombination) having a dramatic
effect. In most situations, increasing overall mutation probability increases the risk of emergence; however, notable 
exceptions arise when deleterious mutations are available.

Economics of New Products/Ideas and Flow of Information in Social Network
Models of pathogens can be used to understand Economics of new products or ideas: new product/idea invades 
market. What is correlate to infection? But here want to consider optimizing.  Pathogen mutation can be viewed as 
“dumb optimizing” – natural selection survival.

SEE YOU ON ZOOM OR VIDEO AFTER THE BREAK: From China one of my colleagues writes “I have been 
teaching online (live streaming) for a few weeks now. It turns out that students are more willing to interact online 
than face-to-face. I guess this virus will have long-lasting influence on how people work---wide acceptance for work 
from home, more flexible work time, and possibly more gender equality with the flexible work time.”


