Quick ROS Intro

CS189 Spring 2019

What is ROS?

e “Robot Operating System”

e Provides a way to communicate with
robots

e Allows us to write several programs which
work together

e Multilingual support (Can write programs
in: C++,Python,LISP, Java, JavaScript,
MATLAB, Ruby, Haskell, R, Julia,...)

An Example Problem: Self-Driving Car as a Robot!

e What kind of things do we want our cars to be able to do on our commute?

Turn on and back out of the garage

Wait for us to get into the car another squirrel

Plan a route to follow

Adapt route for traffic changes
Avoid potholes, roadkill, or bad drivers -

Place a phone call

Play music
Go refuel/recharge when needed

e If eachis a program, do they need to be constantly running?
e What kind of sensors and signals would we take in?

O O O O O O o O

ROS Architecture

Many programs with specific tasks: NODES

2

(Drive_and_Steer

J

-

Identify_Obstacles

Task: Sends
commands to the car
to steer, accelerate,
and brake. Safely
avoids obstacles if
present

Info Needed:
Obstacle position
and size (if present)

-

Proccess_LIDAR

Task: Identifies
obstacles from
LIDAR data.
Determines their size
and location.

Info Needed: LIDAR
data

Task: Reads in raw
LIDAR data and
processes it into
usable data

How do Nodes communicate?

e NODES communicate by Publishing(sending) and Subscribing(receiving)
messages to a TOPIC

‘Obstacles’

‘Depth Map’

N

4 4 4
Drive_and_Steer |ldentify_Obstacles Proccess LIDAR
J J J

Subscribes To: Subscribes To: Publishes To:
‘Obstacles’ topic. ‘Depth Map’ topic. ‘Depth Map’ topic.
Receives messages Uses depth map data Processes raw
with obstacle to identify obstacles LIDAR data from
information to Publishes To: sensor and publishes
determine evasive ‘Obstacles’ topic result
maneuvers

More on Publisher/Subscriber

e When a publisher sends a message to a topic, it does not care which node is
subscribed to it

e Likewise, a subscriber will not care which node published to the topic

e |tis possible to have multiple publishers or subscribers to a single topic
o When could we require multiple subscribers to the same topic?
o What about multiple publishers?

Publisher Queues

By default, a publisher in rospy is synchronous; After a message is published,

the publisher is blocked from sending another message until:
o The message has been sent to the topic
o The topic has sent the message to each of the current subscribers
m Can you think of why this may not be good?

It is recommended that we use asynchronous publishing, which is defined by
queue_size.
For asynchronous, the publisher is still blocked while it is sending the

message to the topic, but can publish another message once it is sent

o A queue of messages can be kept; once it overflows, oldest messages are removed
o The subscribers can receive the messages from the topic at their own rate

Choosing a good queue_size (None = synchronous, Zero = infinite,1 = Most Recent)

http://wiki.ros.org/rospy/Overview/Publishers%20and%20Subscribers

What is ‘roscore’?

e Invisible master that manages communication between nodes

e When a node is started up, it connects to roscore to let it know where it will
publish and subscribe to

e roscore only sets up peer-to-peer connections between nodes

roscore

.’L_.v\l J.._ g .

‘Depth Map’ (Proccess_LlDAR J

“So, what will I actually be using....”

e Here are some commands we will use in this class:

o roscore
m Starts roscore, which is required for nodes to communicate
O rosrun

m Starts a node running
o roslaunch
m Starts a collection of specified nodes; if roscore isn't running, it will
start up roscore
o Crtl+C
s Stops a program while it is running

Starting and stopping our nodes

e We will be writing our nodes using Python with help of ‘rospy’
e Initializing a node
o rospy.init_node(“my_node_name”)
e Shutdown sequence
o rospy.on_shutdown(self.shutdown)
m When the program is shut down, it will run the function described in shutdown
m For our robot, this may include telling it to stop moving
e Defining a Publisher
o pub = rospy.Publisher(‘topic_name’,std_msgs.msg.String, queue_size = 10)
m pub can now publish to the topic ‘topic_name’ messages of type String,only keeping 10
most recent messages if they aren't being received as fast as they are published
m pub.publish(“Hello World”) #Publishes the message using publisher we defined
e Defining a Subscriber
o rospy.Subscriber(‘topic_name’,std_sg.msg.String, process_topic)
m When a message is published to ‘topic name’, the information will be processed using
the function we define as process_topic

http://wiki.ros.org/rospy/Overview

Example Code from Lab 1 (Today):

cmd_vel_pub = rospy.Publisher(‘cmd_vel’, Twist,queue_size=1)

move = Twist()

move.linear.x = 0.5 #drive straight ahead at 0.5 m/s

rate = rospy.Rate(10) #iterate at 10 Hz

while not rospy.is_shutdown():
cmd_vel_pub.publish(move)

rate.sleep()

IF THE PUBLISHER SENDS
COMMANDS TOO SLOWLY, THE
TURTLEBOT WILL SHUT DOWN AND
STOP LISTENING!

bump_sub = rospy.Subscriber(‘bumper’,BumperEvent,bump_callback)
rate = rospy.Rate(10) #iterate at 10 hz
def bump_callback(data):
bump = False
if data.state == BumperEvent.PRESSED:
bump = True
while not rospy.is_shutdown():
if bump:
Move.linear.x = 0 #stop

rate.sleep()

e Any additional questions:
o Check Canvas for links to documentation resources
o Ask your peers
o Ask a question on Piazza
o Askyour TFs!

Have fun using the Turtlebots and treat them well!

Zieper 2019

https://canvas.harvard.edu/courses/47832/pages/getting-started-2-ros-turtlebot-sensors-and-code
https://piazza.com/class/jr6q43s2y3s3pb

