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ì
CS 189: Autonomous Robot Systems
Spring 2020, Fridays 9-11:45am, Pierce 301

Agenda

ì Today’s Agenda
ì Lecture: Autonomy 2: Feedback and Vision
ì Pset 2: Wanderer demonstration

ì What happens next Friday?
ì Pset 3, part a: Follower. Due in class next Friday!
ì Pset 3, part b: Follower. Due week after that.

ì Reading this and next week: 
ì PRR Chapters 7 and 12.

PERCEPTION

PHYSICS OF 
THE WORLD

ACTION

COGNITION

What Does it Mean to be Autonomous? Basics of Autonomy

ì Action (Actuators)
ì Locomotion: Wheels (Differential Drives, Kinematics) 

ì Perception (Sensors)
ì Proprioception and Exteroception (Bumper & Depth)
ì Today: RGB Cameras and Video

ì Cognition (Control)
ì Reactive Behaviors (e.g. Roomba & Wanderer)
ì Today: PID Controllers

COGNITION

PERCEPTION

ACTION
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Feedback Control and PID

Closed Loop Control
ì Desired state (goal state, setpoint)
ì Feedback (i.e. measured - desired)
ì Goal: MAINTAIN set-point
ì Classic Example: Thermostat

World
(Room)

Actuation
(Heater)

Sensor
(Temperature)

Controller
(Thermostat)

Desired goal

Example: Wall Following Robot

ì Simple scenario: trying to move along an infinite 
straight wall while maintaining a fixed distance.

R

Example: Wall Following Robot

ì Simple scenario: trying to move along an infinite 
straight wall while maintaining a fixed distance.

ì Generic Program Loop
Move 1 step forward
If distance-to-wall > desired,

Then turn towards the wall
Else turn away from the wall

R

Example: Wall Following Robot

ì Simple scenario: trying to move along an infinite 
straight wall while maintaining a fixed distance.

ì Concrete Program Loop
Move 0.5 body-length forward
If distance-to-wall > desired,

Then turn 45 degrees towards the wall
Else turn 45 degrees away from the wall

ì How does this Program perform?

R
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Example: Wall Following Robot

ì Simple scenario: trying to move along an infinite 
straight wall while maintaining a fixed distance.

ì Concrete Program Loop
Move 0.5 body-length forward
If distance-to-wall > desired,

Then turn 45 degrees towards the wall
Else turn 45 degrees away from the wall

ì How does this Program perform?

ì How do we do better?R

Example: Wall Following Robot

ì How does this Program perform?
ì Oscillates!! 

ì How do we do better?
ì Reduce turning angle to be very small (avoid overshoot)

ì Check for error very frequently (avoid overshoot)
ì Define some “slop” in our goal (range instead of exact)

Sometimes “bang-bang” control is enough 
(e.g. roomba using bump sensors to wall-follow)

ì How do we do even better? Use more information!

R

Generic Program
Move 0.5 body-length forward
if distance-to-wall is larger than desired,

Then turn 45 degrees towards the wall
Else turn 45 degrees away from the wall

Proportional (P) Control

ì Use more information: use both the direction and 
magnitude of the error to decide how to adjust. 

ì Error = distance-to-wall – desired distance

ì Adjustment
ì ChangeAngle = Kp * error
ì Current action is just your past action + adjustment
ì Kp = “gain” 

ì High-level idea is to adjust proportional to the error
ì If far from the wall --- we will turn sharply

If we are close to the wall --- then turn very slowly
ì How do we decide what Kp is? ….Its not easy

ì Model or Experiments (Control Theory)R

Proportional (P) Control

ì Use more information: use both the direction and 
magnitude of the error to decide how to adjust. 

ì Error = distance-to-wall – desired distance

ì Adjustment
ì ChangeAngle = Kp * error
ì Current action is just your past action + adjustment
ì Kp = “gain” 

ì High-level idea: adjust proportional to the error
ì If far from the Dline --- we will turn sharply

If we are close to the Dline --- then turn very slowly
ì How do we decide what Kp is?

Model or Experiments (Control Theory)R
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Proportional (P) Control

ì Proportional Control Program Loop
Move 0.5 body-length forward
If distance-to-wall > desired,

let error = |desired – distance-to-wall|
Then turn Kp * error towards the wall
Else turn  Kp * error away from the wall

R

P-controllers are very useful!

R

New Scenario
Orient towards a “Source”

R

Proportional Control Program Loop
Measure error
angular-speed = k. error

i.e.  Turn faster if big angle
Turn slowly if small angle

Hint: Pset 3 “Follower”

P-controllers are very useful!

Wall Following Visual Homing Centering Collision Avoidance

Reactive Behaviors == Feedback Controllers

When P Control is not enough

Ignores inertia!
ì Momentum = mass*velocity

ì Car (heavy) at 10mph vs 100mph

ì P-control only reacts to current “error”

ì But error is changing also based on speed

ì Can we “predict the future change in error” => 

Derivative (D) Control!

error

P Controller
Loop

Measure error

ApplyAccelerator = k.error

(as I get closer, I apply less gas)

PD Controller
Loop

Measure error = distance-to-wall

Derivative-error = d(error)/dt

Change = Kp * error  

- Kd * deriv-error
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When P Control is not enough

error

P Controller
Loop

Measure error
ApplyAccelerator = k.error

Adjust based on “past failures”

PID Controller
Loop
Measure error = distance-to-wall
Derivative-error = d(error)/dt
Integral-error = sum(error + past)
Change = Kp * error  

- Kd * deriv-error
+ Ki * integral-error

What if there is an 
“external” constant
source of error?

time

error Error goes 
to zero

Integral
(area under curve)

Is not zero

And that’s PID Control!

Proportional Integral Derivative 

PRESENT         PAST         FUTURE

P  I  D
P-control: In this class, we will only really use P-controllers since our robots are slow. 
Derivative control while important is the most complex, since derivatives tend to be 
noisy. Integral control is more commonly used, to get rid of persistent errors.

Setting Gains: Analytical models are hard to get accurate, but empirical tuning is often 

not that bad.  Common method is to tune Kp first, until stable consistent oscillations, 
then tune KD and then KI. There is also a heuristic method called the Ziegler-Nichols 
Tuning Method which defines the desirable Kp:Kd:Ki ratio

Basics of Autonomy

ì Action (Actuators)
ì Locomotion: Wheels (Differential Drives, Kinematics) 

ì Perception (Sensors)
ì Proprioception and Exteroception (Bump, Depth)
ì Today: More about Cameras and Color

ì Cognition (Control)
ì Reactive Behaviors (e.g. roomba, collision avoidance)
ì Today: PID Controllers

COGNITION

PERCEPTION

ACTION

Perception: Robot Vision

ì Why Robot Vision?
ì Operate in human designed world!
ì Cheaper and cheaper Cameras!

ì But robots vision != computer vision 
ì Robots have limited computation 

time and not a lot of memory     
(real-time)

ì Robots are action driven, and thus 
perception is task driven – can be 
less general (minimalism)

ì Robots also have the advantage (?) 
that they see images over and over 
while they move (video) Pioneer robot with stereo cameras, 

sonar ring, and LIDAR
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Vision: Many Options

COLOR CAMERAS DEPTH SENSING             VIDEO/MOTION     

Why Object 
Recognition
Is hard.

How Depth 
Cameras work
& When to use

Optic Flow and 
Object Tracking

But First: A Video……

“James Bruce. CMU, 2001

Vision: Many Options

COLOR CAMERAS
ì Object Recognition

ì Classically hard AI problem!

ì Camera gives an array of light pixels

ì How do you recognize a chair?

Task-driven Approach

ì Segmentation (shape/color characteristics)

ì Colorspaces (HSV)

ì Typical Style: Blur => Mask => Contours [LAB 2]
ì OpenCV! (real-time vision)

ì Non-Segmentation (“features”)

ì Template Matching and Histogram Backprojection

ì Classifiers (“Face Detection”)

ì Fiducials (e.g. AprilTag)

Why Object 

Recognition is hard.

Segmentation: Color Space

ì Digital Camera = Array of pixels 
(picel == “picture element”) 

ì RGB
ì 24 bit (0-255, 0-255, 0-255)

ì HSV or HSI
ì Hue = actual color 

ì Saturation = amount of color

ì Intensity = amount of light

Equivalent to RGB, but easier to 
numerically threshold on human 
“meaningful” notions of color

R G B H S V
255,0,0 0,100,100

100,0,0   0,100,39.2

255,100,100   0,60,100

100,255,255    180,60,100

I can easily identify a RED 
(hue=0) object even if its 
dark or sunlight is on it!
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Segmentation: Blur 

Noisy pixels in 
the image are 
removed 

Use a Filter to 
“smooth” the 
image out

Filtering is a 
general concept: 
“apply” a matrix 
to every pixel

Gaussian Filter
(one of many possibilities)

“91.450 Robotics 1”, Lecture Notes,
Holly Yanco, UMass Lowell

Segmentation: Blur => Mask 

ì MASK == Threshold image based on “Color” 
ì Can combine masks
ì Can “Posterize” (assign color bins)

Segmentation: Blur => Mask => “Blob” 

ì Give me Objects!
ì Segment my image into  “contiguous regions” of color (blob)
ì OpenCV: Find Contours – gives you a curve around each object   

(curve is represented by an array of boundary points)

ì Then you can do stuff! (boundingbox, areas)

Digression: Find Blobs Algorithm

1 0000000000000000
2 000XXX00000XXX00
3 000XXX00000XXX00
4 000XXX00000XXX00
5 000XXXXXXXXXXX00
6 000XXX00000XXX00
7 000XXX00000XXX00
8 000XXX00000XXX00
9 0000000000000000

Run-Length Encoding: 
Find the contiguous row-regions of color of choice

Foreach row
While there are still pixels in the row

discard pixels until see redX
record start of a “run” by (row, column)
discard pixels until see black0

record end of a “run” by (row, column)

Region Extraction
Link together the row-runs that touch in columns
Create a directed graph over the row-runs

List of Regions
Return a list of connected graphs (“bob”) or compute a 
boundaries (“Bounding Box”, or “Contour”)

Runs: [(2,4) to (2,6)] [(2,12) to (2,15)] 
[(3,4) to (3,6)] [(3,12) to (3,15)]

….. [(5,4) to (5,15)]….. 
[(8,4) to (8,6)] [(8,12) to (8,15)]
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Segmentation: Blur => Mask => “Blob” 

ì OpenCV libraries make much of this very easy
ì Good documentation and online examples
ì BUT still need lots of testing! (customize to your errors)

ì Lab2 Solutions repository has lots of goodies
ì Example of blur=>mask=>contours
ì Trackbar! For calibrating HSV bounds 

Segmentation to Object Size 

If 

If you know the real object size, 
then the image tells you how far it is!

But even better approach is to combine 
RGB Camera and Depth Camera images.

Vision: Many Options

COLOR CAMERAS
ì Object Recognition

ì Classically hard AI problem!

ì Camera gives an array of light pixels

ì How do you recognize a chair?

Task-driven Approach

ì Segmentation (shape/color characteristics)

ì Colorspaces (HSV)

ì Typical Style: Blur => Mask => Contours
ì OpenCV! (real-time vision)

ì Non-Segmentation (“features”)

ì Template Matching and Histogram Backprojection

ì Classifiers (“Face Detection”)

ì Fiducials (e.g. AprilTag)

Why Object 

Recognition is hard.

Non-Segmentation Approaches

You don’t need to always “recognize” the objects in your image –
as the background gets more cluttered and complex this becomes 
hard anyways…..

ì Image Signature
ì Template matching (“image” itself)
ì Color Histogramming (pixel distribution)
ì Classifiers (requires training data)
ì Cascade Classifiers (face detection)
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Image Signatures

Signature =
Take a closeup of the 
“desired” object  
Compute a 
Histogram of Pixel 
Color distributions

Match =
histogram(Image Region) – signature

Example: Robot “imprints” on an object. 
Then robot would moves with a speed 
proportional to the match…. Follows a 
purple triangle too…..

Template =
Take a closeup of the 
“desired” object  

Match = 
Image Region – Template
(sliding window, rotate template)

Output is an image of values where 
the lowest value is the best match
Scale/size invariance requires doing 
this many times.

Problem: too detail oriented

*OpenCV: see Template Matching, Histogram Backprojection, and Image Pyramids

Image Signatures

Instead of Color you can use More Robust Features
Edge detection: (Sobel or Canny)
Corner Detection: (Harris) 

SIFT = Scale Invariant Feature Detection
Do this process at many scales and rotations

91.450 Robotics 1”, Lecture Notes,
Holly Yanco, UMass Lowell

Non-Segmentation Approaches

You don’t need to always “recognize” the objects in your image –
as the background gets more cluttered and complex this becomes 
hard anyways…..

ì Image Signature
ì Template matching (“image” itself)
ì Color Histogramming (pixel distribution)
ì Classifiers (Requires training data)
ì Cascade Classifiers (e.g. Face Detection)

Nothing is perfect!

Non-Segmentation Approaches

You don’t need to always “recognize” the objects in your image –
as the background gets more cluttered and complex this becomes 
hard anyways…..

ì Image Signature
ì Template matching (“image” itself)
ì Color Histogramming (pixel distribution)
ì Classifiers (Requires training data)
ì Cascade Classifiers (e.g. Face Detection)

ì Fiducials
ì Place easy to recognize landmarks 
ì in your environment AprilTag System, Ed Olson, 

Univ of Michigan
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Outline

COLOR CAMERAS             DEPTH SENSING             VIDEO/MOTION     

Object Recognition
(segmentation vs
non-segmentation)

How Depth 
Cameras work
& When to use Optic Flow and 

Object Tracking

Video!

Motion can reveal many things!
ì Background subtraction 

(humans move!)
ì Optic flow (recover motion)
ì Tracking objects

[Compare frames in RGB or Depth!]

*These slides are adapted from OpenCV tutorial (which is great reading! docs.opencv.org)
And OpenCV provides implementations that you can use out of the box

Video!

Motion can reveal many things!

ì Background subtraction 
(humans move!)

ì Optic flow (recover motion)

ì Tracking objects

[Compare frames in RGB or Depth!]

Basic idea – take a “window” of frames and look at all the pixels that don’t 
change (or median pixel value).  Subtract from your image… 

Smarter algorithms: GMM and Bayesian models of the background

Video!

Motion can reveal many things!
ì Background subtraction 

(humans move!)
ì Optic flow (recover motion)
ì Tracking objects

[Compare frames in RGB or Depth!]

Instead of just subtraction, 
Try to “track” where each pixel moved to.

Can give you SPEED and DIRECTION! 
And segmentation…. 

Color represents direction
Brightness represents speed
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Optic Flow

Robotics! Can recover your own motion
ì Speed (magnitude and direction of arrows)
ì Or Distance to objects (at given speed)

Can also recover 
“Behavior”

These algorithms depend on “feature matching”
Pixel window matching  (dense OF) or track features (corners/sift)

Video!

Motion can reveal many things!
ì Background subtraction 

(humans move!)
ì Optic flow (recover motion)
ì Tracking objects

[Compare frames in RGB or Depth!]

Basic idea: Follow a “subwindow” 
as it moves through the image.

OpenCV: Combine Histogram 
Backprojection + Camshift

Later: Kalman Filter

Digression: Kalman Filter

T=0 T=1

Motion Model Prediction (T=1)

Image Model Prediction (T=1)

T=1

Both provide independent     
Probability(pixel)

Compute normalized sum 

Get a confidence value for 
your tracked object!

Outline

COLOR CAMERAS             DEPTH SENSING             VIDEO/MOTION     

Object Recognition
(segmentation vs
non-segmentation)

How Depth 
Cameras work
& When to use

Optic Flow and 
Object Tracking
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Vision is Complex

ì We still understand very little about human visual cortex 
ì Much less than the eye “hardware”

ì We do understand that animal vision systems use tricks
ì Bees, spiders, fish, employ many tricks that are Task Specific
ì And just good enough - not “logical” or fool proof.

ì For Robots, finding appropriate tricks is critical
ì Not just for simple robots like Turtlebot
ì Google Self-Driving Car (“background substraction”)

ì Finally Vision is just one sensor out of many sensors we have;    
Choose the right sensor for the job

ì Human existence does not rely on vision – touch, balance, sound

Upcoming: Pset 3 Follower 

ì You have a GREEN band to put on your ankle

ì Part 3(a) Your robot should recognize the band
ì Draw a bounding box around the ankle band
ì Try to recognize at least up to  4 feet away
ì Calibrate! (“trackbar”)

ì Part 3(b) Your robot should follow the band
ì P-control will be helpful to adjust quickly
ì Avoid running into obstacles
ì Will need to deal with quick disappearance (other leg blocks it) vs longer 

disappearance (robot lost you)

VIDEOS


