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CS 189: Autonomous Robot Systems

Spring 2020, Fridays 9-11:45am, Pierce 301

Welcome to ZOOM!

Using Zoom
7 Me:

| will switch between video and screen sharing. I'll also have an
open Q&A session at the end.

The lecture should appear under recordings for the class.
The slides are also on canvas already.
72 You:
Interrupt any time with questions/comments !
7 1 will have a chat box open, just type a question in.
7 Or use your audio to interrupt any time.
7 The Internet sucks:
By default you should set to no video/mute, until Q&A.
But my home internet may also be a problem, we will see...

Welcome to ZOOM!

Today’s Lecture: Robot Navigation -> Localization

Upcoming Weeks
2 Ignore the schedule of assignments.
Follow Piazza announcements.
? Today | will post some Lab 4 exercises on localization.

Cool Company for Today
2 SKYDIO! Aka Your follower on steroids!
To do obstacle avoidance, it uses path planning on occupancy grids.

References (on Piazza):

2 Kalman Filter Notes, from “Computational Principles of Mobile Robotics”, Dudek and Jenkin,
2000; posted on piazza resources.

2 Also “Introduction to Al Robotics”, chapter 11, Robin Murphy, 2000 and “Introduction to Al”,
chapters 15 and 25, Russell and Norvig, 2009.

Today: Robots Navigating the World

DILIGENT

GOOGLE CAR * :
(hospitals)
B

Scenarios

* Hospital Helper
(e.g. Diligent, Tugs)

*  Office security or mail-
delivery (e.g. Cobal,
Savioke)

* Tour Guide robot in a
museum (Minerva)
COBALT pe ) ¢ * Autonomous Car with

(hotgls) GPS and Nav system

Biological analogies:
Humans, bees and ants,
migrating birds, herds
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Today: Robots Navigating the World

Second Part of CS189: High-level reasoning

From finite state machines to complex
representation and memory

Path Planning: How to | get to my Goal?
Localization: Where am 1?
Mapping: Where have | been?

Exploration: Where haven’t | been?

Today: Robots Navigating the World

Second Part of CS189: High-level reasoning

From finite state machines to complex
representation and memory

| Path Planning: How to | get to my Goal? | Last Lecture

| Localization: Where am I? |Today!

Mapping: Where have | been?
apping ere have | been Next Week

Exploration: Where haven’t | been?

Localization

Simple Question: Where am I?

Not a simple answer:
? Do you have a map?
Yes => a global position in the world
No => position in reference to other objects? Or your own past?
? What can you sense?
Can you sense and record your own self-movement?
Can you sense external things like landmarks?
How certain are you about what you sense?

Localization is a “collection of algorithms”

Today'’s Localization Techniques

Dead-reckoning (motion)
2 Keep track of where you are without a map,
by recording the series of actions that you made,
using internal proprioceptive sensors. (also called Odometry, Path Integration)

Landmarks (sensing)

2 Triangulate your position geometrically,
by measuring distance to one or more known landmarks
E.g. Visual beacons or features, Radio/Cell towers and signal strength, GPS!

State Estimation (uncertainty in motion & sensing)
Probabilistic Reasoning

? Kalman Filters (combine both motion and sensing)
?  Particle Filters (also known as Monte Carlo Localization)

Who are the world’s best localizers?
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Take two steps forward,
Take two steps back,
Are you back where you started?

Dead-Reckoning

7 FORWARD KINEMATICS repeated

Keep track of initial position and the series of
movements/actions that you made.

Method: Take a “step”, compute new position.

Also called odometry or path integration.

2 Our Motion Model
Position at time t = (xy, yy, 0y)

Xesdt Yerdt

Linear velocity = vy; Angular velocity = wy
Then for a small time step dt,
we can compute the new position

Xeedt = X¢ + Ve dt cos o Xy Vedtcos ot

Yesdt = Ye + Ve dt sin o
Opdt = Op + W, dt Dead-reckoning is even easier to calculate
if you only Move or Turn at one time.

Inertial navigation systems (INS)
72 Complex motion (momentum,
external effects)
7 Include accelerometers and
gyroscopes to provide better

measurements of
instantaneous velocity.

? Expensive systems very good
satellites, submarines

? But, low-cost IMUs
increasingly available

2

2

2

I can see the CITGO sign

To my southeast, 15 miles away
Where am I?

How it works
Opposite of dead-reckoning! L1 (xuy1) L3
Use measurements to external landmarks of known position

Examples: visual landmarks, radio towers, GPS!

Example 1: 3 Landmarks + distance only (e.g. Radio towers)
Landmark positions: (x11, y11) (xL2, y12) (x13, y13) (@
If you have three non-colinear landmarks, XoYo

then you lie at the intersection of three circles! [triangulation]

Three equations of the form:

square(dL1) = square(xL1 - x0) + square(yL1— yo) (Landmark L1)

Solve for (xo, yo)

Or if they don’t intersect exactly (noise), minimize sum-of-squared-error

L1 (xu1yu1)

Example 2: Single Landmark but known orientation O and distance d
E.g. Facing the office label MD235 (can’t see it from inside the office)
€0s0 = (x1-x0)/dL sinO = (yL—yo)/ dL Xoyo

Example: GPS

GPS Satellites are your “landmarks”
A Continually transmits a message

? Message includes both time of
transmission, and satellite position

GPS Receiver

? Compute distance by measuring signal
transmission time (speed of light)

A 3D: Lie on the intersection of 4 spheres!

What are some limitation of GPS?
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Today'’s Localization Techniques

Dead-reckoning (motion)
A Keep track of where you are without a map,
by recording the series of actions that you made,
using internal proprioceptive sensors. (also called Odometry, Path Integration)

Landmarks (sensing)

# Triangulate your position geometrically,
by measuring distance to one or more known landmarks
E.g. Visual beacons or features, Radio/Cell towers and signal strength, GPS!

State Estimation (uncertainty in motion & sensing)
Probabilistic Reasoning

? Kalman Filters (combine both motion and sensing)
?  Particle Filters (also known as Monte Carlo Localization)

Who are the world’s best localizers?

Two Techniques

7 Key Idea: Combine Motion and Sensing
(Dead-reckoning + uncertainty) + (Landmarks + uncertainty)
Each has error, but the error can be complementary

7 Kalman Filters
Take advantage of mathematics of Gaussians to model uncertainty
General method for state estimation (not just localization)
Applications: Car + GPS, Lawnmower + beacons, warehouse robots

? Particle Filters (Monte Carlo Localization)

Use a discrete distribution of “Particles” to represent uncertainty
(think of sampling or histograms)

Useful when environment is complex and ambiguous
Application: A robot wandering in a building with a map

Dead-reckoning + uncertainty

Kalman Filters

How it works

# Take a motion step: use dead-reckoning to get position (mean) but
also keep track of uncertainty in movement

? Take a sensing step: use landmarks to triangulate position, then
combine with previous estimate based on relative confidence.

Technique and Limitations

?  Uses Gaussians (bell curves) to capture uncertainty

Dead-reckoning + uncertainty

Kalman Filters

How it works

? Take a motion step: use dead-reckoning to get position (mean) but
also keep track of uncertainty in movement

? Take a sensing step: use landmarks to triangulate position, then
combine with previous estimate based on relative confidence.

Technique and Limitations
?  Uses Gaussians (bell curves) to capture uncertainty

Robot

| #3
Landmark
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1D Kalman Filter Example

“Belief” of my current state
A x.,with variance 0 4

“Model” of how | work
& Control uyand its variance r
? Measurement z, and its variance q

We are assuming that we can model
noise as a Gaussian, with a mean and
variance (experimentally determined)

Step 1: Take a step, calculate new belief

A oexp= X+ Uy

P eo,=0 T

? Note that my uncertainty has increased
due to the noise in my control.

oudl position

My original

My “estimated” position
After | take a motion step

1D Kalman Filter Example

Step 2: Take a measurement z:

Combine to create a calculate new belief of your position

A What is the simplest thing you could do?
Take the average! xt=(ext+zt)/2

?  Better Idea! Take a weighted average of our old motion-
based position estimate and new measurement position.

xt = a*ext + (1-a) zt
ot= (1/ect+ 1/q)*

eot

7t ext
(with variance q)

Your past motion tells you that you are at ex:.
Your new landmark measurement tells you,

you are at z:. Where are you?

A The Kalman Gain “a” is determined by our relative
confidence in our belief about our old state and our

confidence in the current measurement.
a=q/(q+eot)

Consider case where =0, then x:= zt

then we will go with our noise-free landmark measurement.

Consider case where eor

, then x: = ex:

then we will ignore our measurements and go with prev position

X1 z Xt eXt

1D Kalman Filter Example

Final Form 1D example
A exi= X1t Ug

P eoi= 0t

A x= 0 (ex/eot 2/q)
A o= (1/ecy+1/q)?

Caveats

Step 1: Motion
Adds uncertainty

Step 2: Measurement
Reduces uncertainty

And Repeat!

7 We assumed that ut and zt were in the same state
space as xt (position), often not true.

A Also still 1D.....

Final Form 1D example
A e = Xat U

A e0, =0 +r

A x =0, (ex/eo+ z/q)
2?2 o.=(l/ec,+1/q)*

Final Form 3D

A ex,= Ax.,+ Bu,

A eo,=Ac A +R

A x=0, (ex/eo + C"'Qlz)
2 o0.=(l/ec. +C" Q' Q)L

Kalman Filter

Position x = [x, y, theta]

Aand B and C are matrices that
convert old position, control input,
and observation into the correct state
space (note, A is often identity matrix)

R is a Co-variance Matrix

Qs a Co-variance Matrix

o is a Co-Variance Matrix

The uncertainty in [x, y, theta] is not
all independent of each other.

(you supply Rand Q)
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Kalman Filte

Final Form 1D example

A ex= Xt U Extended Kalman Filter

A e0=0u+r Lets say that ut = [D, w] (distance, rotation)
A x=0. (ex/eo+ 2/q)
.

0.=(1/ec. +1/q)* xa=boyw

ext = [x" + Dcosw’, y’ + Dsinw’, w’+w]

. Unfortunately, this is non-linear!
Final Form 3D (can’t express as ex: = Axc1+ Bui)
A ex;= Ax.+ Bu,

eo,= Ao LA +R In EKF, the system is “linearized”

.
A x=0. (ex/eo+ T Q'z) by computing the Jacobian
.

of the motion model
o.=(1l/ec,+C" Q' (C)? and the measurement model.

See Dudek and Jenkins notes for more details

Extensions of the basic idea

Multiple sensors! (sensor fusion)
Z  Just repeat step 2 (sensing) multiple times
Z  Thisis especially useful if you have “occasional

sensors (e.g. landmarks)

When is a Kalman Filter good to use?
Z  When control and sensor noise are well approximated by a Gaussian
(e.g. GPS and car/robot controls are usually decently approximated this way)

7 When estimated state (x) can be represented by just a Gaussian.
Classic bad case: car and two neighboring lanes;
= expected location is best approximated by two Gaussians

Many Applications of Kalman Filters!
2 Object tracking in a video! (opposite of “self” localization)

Particle Filters

| could be TWO PLACES at once!!
| could be TWO PLACES at once!!

What if you are in a building with a map.
7 Butyou have no idea where you are? (ambiguity)
You are definitely in a bathroom, but don’t know 1st or 2" floor

& Problem: Gaussians are not the right model of uncertainty

Instead
72 Represent our estimated position and uncertainty
(our “belief”) using a constant set of “particles”
Think of this as a “sampling” from a probability distribution

That is why it is called Monte Carlo Localization

What it looks Like

Particle “density” = Probability

Initially particles everywhere

Observation of corridors narrows the
possibilities (bimodal distribution)

More movement results in disambiguating
the two cases (now more Gaussian-like)

Robot position

-~
L~
Robot position
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Lets do an Example

My world consists of
hallways, corridor ends
And 4 unique offices

Occupancy Matrix Map

North

East

Topological Map

Lets do an Example

Sensor Model

Pr(zt | xt)

2  Depends on where you are standing
And your error in feature sensing

2  Pr(hallway detection | (1,0)) =0.8

2  Pr(end detection | (1,0)) =0.2 (error!)

There is a small chance that you may think
you are at the end instead of a hallway....

Motion Model

Pr (xt+1 | xt, action_t)

2 Extremely simple model

2  Move using a Compass (N,S,E\W)

2 Pr(stay) = 0.1 (fail to move); Pr(succeed) = 0.9
2

Pr (also depends on position)
E.g. if obstacle (like a wall) then Pr(stay) = 1

My world consists of
hallways, corridor ends
And 4 unique offices

North

East

**1 am making lots of simplifications here
that you would't do in a real system

Lets do an Example

Basic Question: Where am I?

2 Instead of a Gaussian we will
represent position by a fixed number
of particles distributed over space

2 But basic ideas same as Kalman filter!

At the beginning of time

7 | could be anywhere
With equal likelihood

N particles, then avg d/N particles in
each of the d locations.

Take a Sensing Step

STEP1: Take a sensor reading and get “evidence”
7 Lets say the Sensor =>in a hallway

STEP2: Weight each location’s particles by likelihood of that reading
2 Pr(xt | given that you sensed a hallway)

STEP3: Resample N particles but from the distribution of weights
7 Create a new particle distribution that represents your believed location

STEP1 STEP2 STEP3
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Take a Motion Step

More Sophisticated Version PseudoCode

Take a motion step
7 Lets say you move west 1 spot

STEP4: Use your motion model to predict what will happen

2 E.g Ifat(1,0) and take a step west, 90% chance you succeed (0,0)
But there’s a 10% chance you will not move and end up still in (1,0)

2  Roll the dice for each particle and move.

STEPS: Loop to STEP 1
2 Take a Sensor Reading and reduce your uncertainty!

STEP3 Repeat

Take a “noisy”
step west

If Sensor =>
Corridor End

O-LOCALIZATION(a, 2, N, P(X'|X, v, w). P(z|z"). m) returns
Ltime step
es 0 and

Key Differences:

r range sens

1. N Positions particles are
a in continuous space

2D map of the env

persistent: 5. 3 vector of
local variables: 11", a vector of w

S', a temporary vector

1. Sensingis a laser scan
comparison P(z|z*)

or of weights of size N

initialization phase

(s 2. You have a map (m)

Jte Cycre that lets you “estimate”

3 e from P(X'[X = Sli].« what a laserscan should

for i = 110 Al do return (“Raycast”) and
RAYCAST(). X = § Z compared to what you

" W P wyn
WEIGHTED-SAMPLE-WITH-REPLACEMENT(N 8" ") actuallysensed( z )

amp!

retorn

Figure 259 A Monte Carlo localization algorithm using a range-scan scnsor model with | From Russell and Norvig,
independent noise Chapter 25

What it looks Like

What it looks Like

Robot positiqn :




3/25/20

What it looks Like

Robot position

Today'’s Localization Techniques

Dead-reckoning (motion)
Landmarks (sensing)

State Estimation (uncertainty motion & sensing)
Kalman Filters
Particle Filters

Who are the world’s best localizers?

Some T TINY but GREAT Localizers

> |1 &a Pl B ||
- Desert Ant!

Honey Bees! N Path integration
Optical flow and | and sun compass

sun compass

Argentine Ant!
Pheromone Trails

(aka bread crumbs) ——

Time forQ & A




