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ì
CS 189: Autonomous Robot Systems
Spring 2020, Fridays 9-11:45am, Pierce 301

Agenda

ì Lecture: Robot Navigation -> MAPPING!

ì TheConstructSim: 
ì Try out the ROS/Gazebo/Rviz simulators for Turtlebot3
ì More information on assignments will be posted to Piazza

(ignore the schedule online)

ì Upcoming:
ì Lecture next week: Ethics of Robotics and Automation

ì References: 
ì This lecture is partially based on “Introduction to AI Robotics”, chapter 11, Robin 

Murphy, 2000. For SLAM, see online theory tutorial paper “SLAM: Part 1 The 
Essential Algorithms”, by Durrant-Whyte et al, 2006 and online practical tutorial 
paper “SLAM for Dummies” S. Riisgaard, and M. Blas. (2005)

Today: Robots Navigating the World

Scenarios
• Hospital Helper       

(e.g. Diligent, Tugs)
• Office security or mail-

delivery (e.g. Cobal, 
Savioke)

• Tour Guide robot in a 
museum (Minerva)

• Autonomous Car with 
GPS and Nav system

Biological analogies: 
Humans, bees and ants, 
migrating birds, herds

DILIGENT
(hospitals)

SAVIOKE
(hotels)

GOOGLE CAR

COBALT
(hotels)

Today: Robots Navigating the World

Second Part of CS189: High-level reasoning
From finite state machines to complex 

representation and memory

ì Path Planning: How to I get to my Goal?

ì Localization: Where am I?

ì Mapping: Where have I been?

ì Exploration: Where haven’t I been?

Last-1 Lecture

Last Lecture

Today!
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Mapping and Exploration

You are roaming around in an unknown space, what can you learn about it? 

ì Two parts of the problem:
ì Mapping: As you roam around the world, how do you build a memory of  

the shape of the space you have moved through? 
ì Exploration: Given that you don’t know the shape or size of the 

environment, how do make sure you covered all of it?

ì Both have many uses: 
ì Returning back to home/charger after some task.
ì Cleaning a new room efficiently; Systematic search for survivors
ì Mapping a collapsed mine or building.

ì Mapping and Exploration are also “collections of algorithms”
ì E.g. Many representations of a “map”; random walks are exploration
ì We will focus on “Occupancy Grid” algorithms

Mapping and Exploration

ì Question: 
You are roaming around in an unknown space, what can you learn about it? 

ì Two parts of the problem:
ì Mapping: As you roam around the world, how do you build a memory of  the 

shape of the space you have moved through? 
ì Exploration: Given that you don’t know the shape or size of the environment, 

how do make sure you covered all of it?

ì Both have many uses: 
ì Returning back to home/charger after some task.
ì Cleaning a new room efficiently OR Systematic search for survivors
ì Mapping a collapsed mine or building.

ì Mapping and Exploration are also “collections of algorithms”
ì E.g. Many representations of a “map”; random walks are exploration
ì We will focus on “Occupancy Grid” algorithms

Today’s topics

ì Mapping and Exploration Algorithms
ì Occupancy Grids and Sensor Models
ì A First-cut Simple Mapping Algorithm

ì Three Improvements
ì Exploration strategies

ì Frontier based exploration (guaranteed coverage)
ì Managing sensor uncertainty

ì Probabilistic algorithms for Occupancy Grid Mapping (Bayes Rule)
ì Managing motion uncertainty and sensor uncertainty together

ì Simultaneous Localization and Mapping (SLAM)

ì Maybe? Pset 4: Your Autonomous OG Mapper!*
* uses material from all 3 navigation lectures

What is an Occupancy Grid?

ì A way of representing a map as a gridded world where 
each cell is either “occupied” or “empty” or “unknown”.

Grid generated by a Robot => boundary shape

Your World
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Examples What is a Sensor Model?

ì Step1: Constructing a Sensor Model
ì A sensor measures raw values in an environment
ì You have to map that into a Grid Cell Value.
ì Robots can have very different sensors and configurations 
ì Examples: 

ì Think about LIDAR/Depth Camera
ì Vs. a 360 degree vision/ranging system

Example: Depth Sensor Model
R = maximum range, B = maximum angle
Let say the sensor at point p returns distance = “r”

Region 1 (dist < r, grid cell probably empty)
Region 2 (dist = r, grid cell probably obstacle)
Region 3 (dist > r, grid cell unknown/obscured)

Constructing a Sensor Model

Depth = r

Example: Depth Sensor Model
R = maximum range, B = maximum angle
Let say the sensor at point p returns distance = “r”

Region 1 (dist < r, grid cell probably empty)
Region 2 (dist = r, grid cell probably obstacle)
Region 3 (dist > r, grid cell unknown/obscured)

Constructing a Sensor Model

Depth = r

Simplest Sensor Model
Where I stand is Empty (white)
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Example: Depth Sensor Model
R = maximum range, B = maximum angle
Let say the sensor at point p returns distance = “r”

Region 1 (dist < r, grid cell probably empty)
Region 2 (dist = r, grid cell probably obstacle)
Region 3 (dist > r, grid cell unknown/obscured)

Constructing a Sensor Model

Depth = r

Simplest Sensor Model
Where I stand is Empty (white)

A Better Model
Set Region 1 cells as Empty (white) 
Set Region 2 cells as Occupied (black). 
Pick a max range/angle where data is reliable
Rest is still Unknown (gray)

A Simple OG Mapping Algorithm

1. Initialize a Grid
ì Set all locations as “unknown”, pick a start location and orientation

2. Update the Grid
ì Mark your current grid position as “empty”
ì Using your better sensor model, 

Mark all visible grid locations as “empty” or “occupied”

3. Pick a Next Move
ì Look at neighboring grid positions in your map
ì Pick a neighboring grid location that is empty (randomly)
ì Move to it and update your current position in the Grid

4. Loop forever
Keep moving and updating the grid (unless you are “done”)

R R
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R R

A Simple Mapping Algorithm

1. Initialize Grid

2. Update the Grid
ì Mark your current position as “empty”
ì Mark sensed nearby grid locations

As “empty” or “occupied”

3. Pick a Next Move
ì Look at neighboring grid positions
ì Choose a random empty direction 
ì Move and update your position in the Grid

4. Loop forever

Improvement 1:
Exploration 

Strategy

Better to systematically 
and (hopefully) 

efficiently cover the 
space.

Also would be good to 
know when you are 

done.

Exploration

ì Basic Concept in Math: Random Walks in bounded 2D
ì With Probability=1 you will eventually visit every spot

ì Basic Concept in CS: Systematic Graph Coverage
ì You are given a “graph” with V nodes

Write an algorithm that visits all of the nodes
Breath-First Search and Depth-First Search; Time Complexity: O(V+E)

ì Basic Concept in Robotics: Traversing a GRID Graph is different
ì DFS works, but will still make a robot retrace steps
ì Better choice: Frontier Based Exploration
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Exploration in Grid Worlds

ì Frontier Based Exploration
ì A common technique for building maps
ì Key Idea: 

ì Identify the “frontiers” between known and unknown
Frontier cell = a unknown cell with at least one empty cell nbr

ì Pick a frontier cell (e.g. the closest)
ì Plan a path to go explore it.

ì Done Condition:
ì No more frontier nodes left => your map is Complete!
If finite world, then any algorithm that systematically explores frontier 
nodes is guaranteed to cover the whole world. 

R

A Frontier Node is a 
Gray node (Unknown)
next to a 
White node (Empty)

R

A Frontier Node is a 
Gray node (Unknown)
next to a 
White node (Empty)

A Less Simple Mapping Algorithm

1. Initialize Grid

2. Update the Grid
ì Mark your current position as “empty”
ì Mark sensed nearby grid locations

As “empty” or “occupied”

3. Pick a Next Move
ì Identify frontier cells
ì Pick one (e.g. maybe the closest)
ì Plan a path* to the nbr empty cell.
ì Go to that location using this path

(and keep track of your position as you move)

4. Loop until no frontier nodes are left

* We covered path planning two lectures ago

The smart sensor model and 
smart exploration strategy 

make for much faster 
mapping!
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Turtlebots can do this! Today’s topics

ì Mapping and Exploration Algorithms
ì Occupancy Grids and Sensor Models
ì A First-cut Simple Mapping Algorithm

ì Three Improvements
ì Exploration strategies

ì Frontier based exploration (guaranteed coverage)
ì Managing sensor uncertainty

ì Probabilistic algorithms for Occupancy Grid Mapping (Bayes Rule)
ì Managing motion uncertainty and sensor uncertainty together

ì Simultaneous Localization and Mapping (SLAM)

Questions? Today’s topics

ì Mapping and Exploration Algorithms
ì Occupancy Grids and Sensor Models
ì A First-cut Simple Mapping Algorithm

ì Three Improvements
ì Exploration strategies

ì Frontier based exploration (guaranteed coverage)
ì Managing sensor uncertainty

ì Probabilistic algorithms for Occupancy Grid Mapping (Bayes Rule)
ì Managing motion uncertainty and sensor uncertainty together

ì Simultaneous Localization and Mapping (SLAM)
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A Less Simple Mapping Algorithm

1. Initialize Grid

2. Update the Grid
ì Mark your current position as “empty”
ì Mark sensed nearby grid locations

As “empty” or “occupied”

3. Pick a Next Move
ì Identify frontier cells
ì Pick one (e.g. maybe the closest)
ì Plan a path to the nbring empty cell.
ì Go to that location using this path

(and keep track of your position as you move)

4. Loop until no frontier nodes are left

Improvement 2:
Sensors aren’t perfect

Take advantage of the 
fact that you are often 

retracing steps 

And taking 
measurements 

multiple times of the 
same location

Example: Depth Sensor Model
R = maximum range, B = maximum angle
Let say the sensor at point p returns distance = “r”

Region 1 (dist < r, grid cell probably empty)
Region 2 (dist = r, grid cell probably obstacle)

Region 3 (dist > r, grid cell unknown/obscured)

Part1: A Probabilistic Sensor Model

Depth = r

A More Complex Sensor Model: Probabilistic
For a cell at distance r and angle a
P(“correctness”) = [(R-r/R) + (B-a/B)]/2
i.e. Uncertainty in my assessment grows 
with distance and angle  from the centerline

Part2: A Bayesian OG Map

For every grid location (i,j), store a probability value
P(Occupied) = Probability this grid location is Occupied
P(Empty) = 1 - P(Occupied)

1 0 0

1 -1 0

1 -1 -1

1.0 0.1 0.1

0.8 0.5 0.2

0.8 0.5 0.5

Before After

Bayesian OG Mapping

For every grid location (i,j), store current probability value 
P(Occupied|sn) = Probability this grid location is Occupied (“n” timestep)

Probabilistic Sensor Model
P(s|Occupied) 
Probability that you sense value s
Given that a grid location is occupied.
Your sensor error model

Bayesian Map 
P(Occupied|s) 
Probability that a grid location is occupied 
Given that you sensed value s
We can compute this!

Bayes Rule
P(A|s)  =                               P(s|A) P(A)

P(s|A)P(A) + P(s|(1-A)) P(1-A)

Bayes Map Update Rule
P(Occupied|sn) =                        P(sn|Occupied) P(Occupied|sn-1)

P(sn|Occupied)P(Occupied|sn-1) + P(sn|Empty) P(Empty|sn-1)
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Bayesian OG Mapping

ì In the beginning of time, 
ì P(Occupied)

= P(Empty) = 0.5

ì Lets say I observe grid(5,6) for the first time,                                                       
and lets say my sensor reading s=“obstacle” (but its far away, i.e. less sure)
ì New Reading: P(s|Occupied) = 0.62, P(s|Empty)=0.38

ì Old Map Estimate P(Occupied)=P(Empty)=0.5
ì P(Occupied|s=“obs”) = (0.62*0.5) / (0.62*0.5) + (0.38*0.5) = 0.62

Which is what you’d expect because we have no better knowledge

ì Later if we observe location grid (5,6) again, we have prior knowledge
ì We now think P(Occupied)=0.62 P(empty)=0.38
ì New sensor reading P(s=“obstacle”|Occupied) = .80 (we are closer & surer)
ì P(Occupied|s=“obs”) = (0.8*0.62) / (0.8*0.62)+(0.2*0.38) = 0. 87                   

(my new confidence is higher, that this grid cell is occupied)

Bayes Map Update Rule: 
P(Occupied|sn)              

P(sn|Occupied) P(Occupied|sn-1)
P(sn|Occupied) P(Occupied|sn-1) + P(sn|Empty) P(Empty|sn-1)

Improvement 2: Probabilistic Mapping

ì Overarching idea
ì Store probabilities of occupancy rather than 3 values.
ì Caveat: We treat each grid cell as independent even though its not.

ì But how do you move in this probabilistic map?

ì You periodically must turn probability into Occupied/Empty!

ì Use some threshold to decide,                                                                                    
e.g. P(occupied) > 0.8 and P(empty) < 0.2, rest is “unknown”.

ì Then do frontier exploration and path planning as before on your 
deterministic map.

A Probabilistic OG Mapping Algorithm

1. Initialize Grid to 0.5

2. Update the Grid

ì Mark your current position as high probability “empty”

ì Use your sensor model and Bayes rule to update grid

3. Pick a Next Move

ì Threshold your map into empty, occupied, unknown

ì Identify frontier nodes, and pick one

ì Plan a path to the clear node nearest frontier

ì Go to that location and update position

4. Loop until no frontier nodes are left

Improvement 3:

Motion isn’t perfect 

either!

Maybe you are not 

where you think you 

are!

And you are just 

messing up your grid 

over time due to drift

Recall: Probabilistic Localization…

ì Probablistic Localization
ì P(xt | Z0-t U0-t map) 
ì Where am I? Given that I took the                 

noisy actions U and noisy observations Z of 
things in my perfect map.

ì Probablistic Mapping
ì P(map I Z0-t, U0-t)
ì What is my map like? Given that I made      

noisy observations Z as I walked along my 
perfect path dictated by U

1 lecture ago:
Kalman Filters
Particle Filters

Kalman Filter
(observed known landmarks)

ext

eσt

zt
(with variance q)

Particle Filter
(match with known map)
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Probabilistic Localization and Mapping

ì Probablistic Localization
ì P(xt | Z0-t U0-t map) 
ì Where am I? Given that I took the                 

noisy actions U and noisy observations Z of 
things in my perfect map.

ì Probablistic Mapping
ì P(map I Z0-t, U0-t)
ì What is my map like? Given that I made      

noisy observations Z as I walked along my 
perfect path dictated by U.

1 lecture ago:
Kalman Filters
Particle Filters

Today: 
Bayesian 
Occupancy Grids

Probabilistic Localization and Mapping

ì Probablistic Localization
ì P(xt | Z0-t U0-t map) 
ì Where am I? Given that I took the                 

noisy actions U and noisy observations Z of 
things in my perfect map.

ì Probablistic Mapping
ì P(map I Z0-t, U0-t)
ì What is my map like? Given that I made      

noisy observations Z as I walked along my 
perfect path dictated by U.

My autonomous mini-rover 
keeps track of its position 
using its wheel encoders, 
IMU, and occasionally gets 
GPS signals

Its goal is to construct a 
map of the disaster area 
obstructions, so that other 
vehicles can find safe paths

Probabilistic Localization and Mapping

ì You took a time series of Actions U and Observations Z
ì Probablistic Localization: P(xt | Z0-t U0-t map) 
ì Probablistic Mapping: P(map I Z0-t U0-t)

ì Probablistic SLAM (“Simultaneous”)
ì P(xt, map| Z0-t U0-t) 
ì Where am I and what is my map? 
ì Given noisy actions U and made noisy observations Z
ì Distribution of a huge space! (all possible positions and maps)

ì Many Methods
ì EKF-SLAM (Kalman Filter) and Fast-SLAM (Particle Filters/OG)

Extended Kalman Filter SLAM

ì In original EKF, 

ì State == robot position, represented as a Gaussian (xt σt)

ì In EKF-SLAM, 

ì State = [robot and all landmark] positions as Gaussians

ì Position Xt = {xt, m1, m2, m3 … mn}      (number of landmarks grows!)

ì Co-variance σt = (n+1)x(n+1) matrix (uncertainty is correlated!)

ì Supply a motion model and observation model as before (Gaussian)

ì Interesting factors

ì Number of landmarks (n) grows with time (i.e. you build a map). 

ì But good news: Landmark correlations can help you converge faster and 
better. 
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Extended Kalman Filter SLAM
ì Lets say EKF-SLAM State at time t is

ì Position X = {x, m1, m2, m3, m4}      (robot + landmarks-so-far)
ì Co-variance σ = 5x5 matrix (uncertainty and correlations)

ì Basic Procedure: Four Steps (Repeat)
1. Motion Step: Update P(xt, map | Z0-(t-1) U0-t)  based on action Ut

2. Observation Step: Update P(xt, map | Z 0-t U0-t) based on Zt

3. Combine into Single Estimate
Data Association: Determine which landmarks are re-observed* (lets say m2 m3)
Your motion state estimate = xt, m2’ m3’ (where you expect to see these landmarks)
Your observation estimate = xt’’ m2’’ m3’’ (where you see landmarks & think you are)
Kalman Gain: Compute relative confidence and combine estimates

Then update the whole map (m1-m4), thanks to co-variance matrix
4. Add Landmarks: Add New landmarks to the State (say m5)

ì Important – implementing Data Association and landmark choice! 

More About SLAM

ì Data Association and Loop Closure
ì We don’t really have perfect landmarks

ì Instead we have laserscan “features” (e.g. major corners)
ì Tradeoff: Uniqueness and frequency 
ì Local matching is easier than long term matching
ì Can do loop closure with human assistance.

ì Practical Implementations
ì These algorithms are theoretically well-grounded
ì But practical implementation still requires significant work                          

(e.g. constructing sensor/motion models, choosing landmarks.) 

ì References (online)
ì SLAM Part 1: The Essential Algorithms, Durrant et al, 2006 (theory)
ì SLAM for Dummies, Riisgaard et al 2005 (practice)
ì Gmapping in ROS! (PRR chapter 9 = offline map making)

Conclude: Robots Navigating the World

Second Part of CS189: High-level reasoning
From finite state machines to complex representation and memory

PathPlanning Localization Mapping/Exploration

Visual Homing
Forward Kinematics
(direct methods)

Bug Algorithms
(obstacles)
A* Algorithm
(maps)

Dead-Reckoning
(using internal motion)
Landmarks
(using external sensing))

Kalman Filter
Particle Filters
(combine uncertain 
motion and sensing)

Occupancy Grid Mapping

Sensor models
Frontier Exploration
(faster mapping)

Bayesian Mapping
SLAM 
(uncertainty in maps      
and location)

Conclude: Robots Navigating the World

Second Part of CS189: High-level reasoning
From finite state machines to complex representation and memory

PathPlanning Localization Mapping/Exploration

Visual Homing
Forward Kinematics
(direct methods)

Bug Algorithms
(obstacles)
A* Algorithm
(maps)

Dead-Reckoning
(using internal motion)
Landmarks
(using external sensing))

Kalman Filter (ROS pkg)
Particle Filters
(combine uncertain 
motion and sensing)

Occupancy Grid Mapping

Sensor models
Frontier Exploration
(faster mapping)

Bayesian Mapping
SLAM (ROSpkg: Gmapping)
(uncertainty in maps      
and location)


