

Introduction to Multi-Robot Systems

Why Multiple Robots?

- **Parallelism:** Many robots can accomplish the task faster
- 7 Redundancy: Hazardous environment with chances of losing robots
- 7 Required: Too difficult to do with a single size robot
- Complex Tasks: Need several specialized robots 7
- Real-time Requirements: Monitor large areas, respond quickly 7

Introduction to Multi-Robot Systems

Why Multiple Robots? 7

- **7** Parallelism: Many robots can accomplish the task faster
- 7 Redundancy: Hazardous environment with chances of losing robots
- 7 Required: Too difficult to do with a single size robot
- 7 Complex Tasks: Need several specialized robots
- 7 Real-time Requirements: Monitor large areas, respond quickly

Example Applications (which aspect do they focus on?)

- Exploration of a abandoned mine to construct a map Locating and removing mines from a landmine field
- Searching for survivors after a natural disaster Managing an orchard: Picking fruit in an orchard, pesticide application, watering * *
- Automated factory: Sorting different sized parts or rubble, doing repetitive tasks ٠
- Hospital or hotel delivery robots
- A Fleet of Self-driving Cars!

Introduction to Multi-Robot Systems Why Multiple Robots? **7** Parallelism: Many robots can accomplish the task faster 7 Redundancy: Hazardous environment with chances of losing robots Required: Too difficult to do with a single size robot 7 7 Complex Tasks: Need several specialized robots 7 Real-time Requirements: Monitor large areas, respond quickly How do we make Robots Cooperate Effectively?

Semi-Centralized

Decentralized

Centralized

Architectures for Coordination

Centralized 7

- Global Controller with Global View Good for Tightly-coupled tasks, Efficiency, Adversarial
- ת ת ת
- Good for Small Teams or Highly Structured Environments Requires: High Bandwidth/Computation/Sensing (at least for Leader)

Middle Ground: Semi-Centralized

- Try to approximate the effect of a centralized system
- Supervisor and Team (supervisor acts as global controller) 28
- 7 Hive-based (homebase or rendevous to deposit information)
- Role-based coordination (pre-decide responsibilities) When? Communication is available but slow or limited range.

Decentralized

7

7 No one has a full world view (peer-to-peer system) 7

Independent acting robots (purely local or no communication) Good for large distributed teams (no centralized bottleneck/failure) Often biologically-inspired (swarm intelligence)

Goes Beyond Robots....

Semi-Centralized Cooperation

Most "Intuitive" Choice for an Application

- worker would.
- Then I can put a supervisor (maybe human) in charge of allocating 7 tasks and adjusting when necessary
- Intuitive: matches what we already do... (e.g. UPS managing a delivery fleet of trucks)
- - **7** What can we expect a robot to be able to do reliably on its own?
 - **7** How do we communicate with robots?

Human Interaction

→ What do the humans do?

- Most coordination is done by high-level planners
 - (e.g. exploration planner sends robots to the "frontiers", map constructor does the loop closure, neutralizer planner decides actions for threats)
- Humans just do error correction!
 - ↗ Fix mistaken loop closures, or suggest closures
 - Check when robots get into trouble (warning signal)
 - Confirm explosive targets for "neutralization"
- In spite of this, still fairly frequent interaction
- Cognitive load of managing multiple robots is high..... Open area

Soccer as a New Grand Challenge

By the year 2050: Develop a team of *fully autonomous humanoid robots* that can win against the human world soccer champion team

What makes Soccer Different From Chess?

- - **Dynamic** and Adversarial
- → But lots of differences too
 - **Not Symbolic** (In AI, Math is easier than Vision)
 - Not turn taking (harder for Game heory)
 - **7** Distributed and Multi-agent (cooperation)

- We still understand very little about how to make "physical" systems that operate in our world
- ↗ Moravec's Paradox

Today: How do Robots Play Soccer?

RoboCup small-size league Skills, Tactics, and Plays

Centralized intelligence, very fast pacedAbility to generate and respond to opportunities

RoboCup Small-Sized League

- Competition between two teams of 5 robots each
 - Overhead vision, single computer controller, wireless comms to robots
 - Small robot design size (20cm diam) and large field (6x4meters)
 - Very fast-paced! (robots 2m/s, ball speeds 4m/s)
 - Soccer-like Rules and Soccer-like Behavior! Video2010 (2007)

8

Example Play 1

Plays: Multi-Robot Plans

7 Plays = Multi-Robot Coordination

- 7 Skills+ Tactics = Strong Suite of Single Robot Behaviors
- 7 But the world moves very fast ... (traditional AI planning/game-players too slow)
- Plays provide strategic control of the entire team Simple language for describing plays, including "set plays" Can think of plays as prepackaged "play

7 What constitutes a Play?

- Roles:
- Provides four roles, which are assigned to robots on initiation
 Each role is a sequence of tactics with implicit synchronization ("plan")
- Applicability conditions (~ PRECOND)
- Specify when the play can be initiated Termination conditions (~ EFFECTS)

7

Specify when the play should stop Four types: succeeded, failed, completed, aborted 7

PLAY Naive Offense **↗** APPLICABLE offense 7 DONE aborted !offense ROLE 1 7 7 Shoot

- ROLE 2
- defend_point (-1400 250) 0 700 ROLE 3 7
- defend_lane (B 0 -200) (B 1175 200)
- 7 ROLE 4

7

defend_point (-1400 -250) 0 1400

			Example Play 2	
71	RO オ	LE 1 pass 3 Mark-opponent o from_shot	PLAY Two Attackers, Pass APPLICABLE: offense in _their_corner (predicates) DONE: abort !offense OROLE 0 closest_to_ball (opponent)	
7	ROLE 2 block 320 900 -1			
7	RO オ オ	DLE 3 position_for_pass (R (1000 0) (700 0) 500) (implicit sync w passer) receive_pass shoot		
7	ROLE 4 defend_line (-1400 1150) (-1400 -1150) 1000 1400 			

Play Book and Play Executor

Play Book

- A Library of plays available to the team (must be easy to change!)
- Each play can be given a weight (can learn the weights! Use a simulator)

↗ Play Selection

- ↗ Choose plays according to their weights
 - Choose the highest-weight play? Choose probabilistically?
 - Adapt play weights based on past success/failure!
- Play Executor and Monitor
 - ↗ "Interprets" the play by turning it into real robot commands
 - 7 Monitors how well things are going (e.g. termination conditions)
 - "Hysteresis" (switch to take advantage of sudden opportunities, but not too often) 7

Robot Cooperation!

Kilobot Project

Collective Complexity Decentralized

MAGIC Competition

-Centralized

Robot Soccer Competition Small Size Leagues

Centralized

Introduction to Multi-Robot Systems

ℬ Why Multiple Robots?

- **Parallelism:** Many robots can accomplish the task faster
- **Redundancy:** Hazardous environment with chances of losing robots
- **Required:** Too difficult to do with a single size robot
- **7** Complex Tasks: Need several specialized robots
- **7** Real-time Requirements: Monitor large areas, respond quickly

How do we make Robots Cooperate Effectively? Centralized Semi-Centralized Decentralized

