
Introduction to stochastic di�erential equations
An alternative approach to studying stochastic systems uses stochastic di�erential equations. You
may have seen one written in the Langevin notation, e.g.:

dx
dt

= µ(x , t) + σ(x , t)η(t)

where η(t) represents “random �uctuations.” For such equations, we must specify characteristics of
the deviations η, e.g., the type of distribution they are drawn from, its parameters, and their time
correlation:

C(τ) = ⟨η(0)η(τ)⟩ = lim
T→∞

1
T ∫ T

0
η(t)η(t + τ) dt

C should be a decreasing function of τ1: a fast fall-o� tells us that the �uctuations change quickly. For
example, �uctuations in temperature might occur on the timescale of hours (illumination), months
(seasons), and eons (ice ages). If the �uctuations are occurring much faster than our timescale of
interest, we might make the simplifying assumption that they are not correlated at all in time:

⟨η(0)η(τ)⟩ = cδ(τ)

Here δ represents the Kronecker delta and c is the second moment of η, which will depend on the
distribution of η2. Fluctuationswith zero time correlation are o�en calledwhite noise.�e termnoise
comes by analogy to measurement noise: a major di�erence is that noise in measurement does not
a�ect the future evolution of the system. When σ(x , t) is a constant, we say that the noise is addi-
tive (just “tacked on” to the deterministic solution); otherwise, we say that the noise ismultiplicative.

White noise can be approximated in an otherwise deterministic simulation by taking small time
steps and drawing a random variable to plug in for η at each time step. We can use this to simulate
sample realizations of an SDE, but maybe not in the way you’d expect näıvely. For example, you
might suspect that the analog of Euler’s method for a stochastic di�erential equation with (normal)
Gaussian white noise is:

x(t + ∆t) = x(t) + [µ(x , t) + σ(x , t)η] ∆t, η ∼ N (0, 1)

�is is close, but not quite right.�e actual equivalent, given by the Euler-Maruyama method, is:

x(t + ∆t) = x(t) + µ(x , t)∆t + σ(x , t)η
√
∆t, η ∼ N (0, 1)

Later in this lecture we will discuss why this is so; however, I emphasize that there is a very rich liter-
ature on analysis of SDEs and that if this topic interests you, a proper course on stochastic processes
or stochastic calculus (e.g. Stats 171) would be an appropriate next direction.

Our prior discussions of stochastic modeling have been motivated by the common-sense notion
that molecule numbers in real biological systems are discrete and sometimes too low to legitimize
continuous approximations. By contrast this Langevin approach restores us to the realm of con-
tinuity and imposes a distribution on noise which may be patently unrealizable. Motivating this
treatment of noise requires context-dependent explanation, and for both historical and epistemic

1Note that time correlations for variables in a system may have very di�erent shapes: consider, for example, the correlation function for an
oscillator.

2If η ∼ N (0, 1), c = 1.



reasons there is no better place to start than with Brownian motion. What we learn about di�usion
will be helpful later in our study of development and Turing patterns. We will begin by studying
Brownian motion with more familiar approaches and eventually formulate it in terms of a Wiener
process.

Brownian motion
Robert Brown, observing pollen grains (and inorganic material) suspended in water in the mid
1820s, noticed that they appeared to move erratically and without proximate cause. Einstein cor-
rectly asserted that individual water molecules imparted momentum on colliding with the pollen
granule: many such collisions might sum to give a net momentum in a random direction, in which
the pollen granule would brie�y travel before additional collisions changed its trajectory once again.
�e �uctuations in position under Brownianmotion occur on such short time scales relative to what
we are able to observe physically that we can think of them as white noise. By symmetry, the distri-
bution of �uctuations should be even, that is, f (x) = f (−x) and therefore have an average value of
zero.

During Einstein’s miracle year (1905), he published a paper establishing a formula for the mean
square displacement of a particle undergoing Brownianmotion via a derivation of Fick’s second law
and a description of the di�usion coe�cient D. He started from nothing but the assumption that
the probability distribution for a displacement y in a small time period τ would be given by some
p(y), with p even and normalized. His method assumes a large ensemble of n particles: the number
changing position by a distance between y and y + dy units in a time τ would therefore be:

dn = np(y)dy
Denoting the particle concentrations at a time t by c(x , t), we can calculate the concentrations a
short while later by:

c(x , t + τ) = ∫ ∞

−∞
c(x − y, t) p(y) dy (1)

Particles canmove to point x from any other position (though the probability of moving there from
far away is lower): this convolution integral sums all of those contributions to the concentration at
point x a�er a time τ has passed.�is general concept should be reminiscent of the master equation
and the convolution integrals you have studied in this course. To get somewhere interesting, we
perform some Taylor expansions and plug in to Equation 1:

c(x , t + τ) ≈ c(x , t) + τ ∂c
∂t

(τ small)

c(x − y, t) = c(x , t) − y ∂c
∂x

+ y2
2
∂2c
∂x2

− y3
3!

∂3c
∂x3

+ . . .

c(x , t) + τ ∂c
∂t

= ∫ ∞

−∞
[c(x , t) − y ∂c

∂x
+ y2
2!

∂2c
∂x2

− y3
3!

∂3c
∂x3

+ . . .] p(y) dy

= c(x , t) ∫ ∞

−∞
p(y) dy − ∂c

∂x ∫
∞

−∞
y p(y) dy + 1

2!
∂2c
∂x2 ∫

∞

−∞
y2 p(y) dy + . . .

Since p(y) is normalized, we can cancel c(x , t) from both sides of the equation. Moreover, since
p(y) is odd, the value of the integrals will be zero for all odd powers of y, so that we are le� with:

τ ∂c
∂t

= 1
2!

∂2c
∂x2 ∫

∞

−∞
y2 p(y) dy + 1

4!
∂4c
∂x4 ∫

∞

−∞
y4 p(y) dy + . . .



Noting that the terms at right are decreasing rapidly in value, and de�ning D = 1
2τ ∫

∞
−∞ y2p(y) dy,

we arrive at Fick’s second law (so named for the person who discovered it empirically half a century
prior), otherwise known as the di�usion equation:

∂c
∂t

= D ∂2c
∂x2

We can now introduce by ansatz3 a solution to this equation for the initial condition where the
concentration is initially one at the origin:

c(x , t) = 1√
4πDt

e−x2/4Dt

Although we did not bother to derive it, let’s pause to celebrate the existence of this solution, which
is di�usion’s equivalent of an impulse response function. (In some disciplines, the term “Green’s
function” is more common than “impulse response function.”�e underlying concepts are equiva-
lent but you aremore likely to �nd examples incorporating spatial dimensions if you look upGreen’s
functions.) Since you know how particles that start di�using from a certain point at time 0 will be-
have, you can use a convolution integral to describe how any initial spatial con�guration of particles
will evole with time. On problem set eight, you’ll use this concept to explore how �uorescence re-
covery a�er photobleaching (FRAP) can be used to measure the di�usion constant.

�e mean of this even function is clearly zero; the second moment (and thus the variance) can be
found using a simple trick based on the normalization

− ∫ ∞

∞
e−x2/4Dt dx = −

√
4πDt Letting y = 1/4Dt:

− ∂
∂y ∫

∞

∞
e−x2/4Dt dx = ∫ ∞

∞
x2e−x2/4Dt dt = − ∂

∂y

√
π

√y
= 2Dt

√
4πDt

⟨x2⟩ = ∫ ∞

∞
x2c(x , t) dx = 2Dt

σ 2x = ⟨x2⟩ − ⟨x⟩2 = 2Dt

�rough an independent derivation of the di�usion coe�cient of a hard sphere of radius r in me-
dia with viscosity η, D = kBT/6πrη, Perrin was able to use this equation to calculate Boltzmann’s
constant and thus Avogadro’s number. Perrin’s experiment was done with small uniform spheres
in saline solution on a cover slip: he used a camera lucida to record the position of these spheres
at time intervals and thus to calculate ⟨x2⟩. (A 2006 reiteration of this experiment is described in
Newburgh et al.’s paper on the course website.)

Let’s re�ect brie�y on howwe arrived here: Einstein did notmake any unjusti�ed assumptions about
p(y) – indeed, never calculated it - but still gave us a deterministic formula for the time evolution
of the concentration pro�le. Focusing on the concentration pro�le was the key: anything unusual
that might befall an individual molecule is “averaged out” in the ensemble. Intuition and frequent
exposure to the ergodic hypothesis accurately suggest that the probability distribution of a single
molecule should re�ect the normalized concentration pro�le, we we shall soon see.

3I have posted a derivation for those interested; it is omitted here for employing the residue theorem and some gnarly Gaussian integrals.



Langevin’s derivation
Langevin’s alternative derivation (1908) of the variance in a particle’s position was one of the �rst
attempts to employ stochastic di�erential equations to understand a natural phenomenon: some
concerns with the rigor of his approach drove the development of modern stochastic analysis. He
envisioned a single pollen granule bu�etted by a “random force” fr(t) due to impacts withmolecules
of the �uid and also experiencing the force of viscous (Stokes) drag:

Fnet = md2x
dt2

= −bdx
dt

+ fr (2)

Like Einstein, Langevin makes no assumptions about fr(t) other than “that it is indi�erently posi-
tive and negative and that its magnitude is such that it maintains the agitation of the particle, which
the viscous resistance would stop without it.” (b is a Stokes drag coe�cient with units of kg/s.) In
this way he set about proving the single-particle equivalent of Einstein’s result concerning the mean
square displacement.

Starting from equation 2, multiply both sides by x and rearrange4 to �nd:

m ( d
dt

[x dx
dt

] − [dx
dt

]
2

) = −bx dx
dt

+ frx

Take the average of both sides, exploiting the commutativity of derivatives and averages:

m d
dt

⟨x dx
dt

⟩ − ⟨mv2⟩ = −b ⟨x dx
dt

⟩ + ⟨ frx⟩

Langevin stipulated that ⟨x fr⟩ is zero.�e equipartition theorem describes the relationship between
the average kinetic energy of a particle and the temperature: ⟨ 12mv2⟩ = 1

2kbT . Inserting theese values,
we obtain:

d
dt

⟨x dx
dt

⟩ + b
m

⟨x dx
dt

⟩ = kBT
m

�ere is nothing le� to do but integrate. We use an integrating factor method, multiplying both
sides by ebt/m and rearranging:

d
dt

[ebt/m ⟨x dx
dt

⟩] = kBTebt/m
m

Ô⇒ ⟨x dx
dt

⟩ = kBT
b

(1 + e−bt/m)

assuming the particle is initially at the origin for convenience. Finally, noting that xẋ = 1
2d(x2)/dt:

d
dt

⟨x2⟩ = 2kbT
b

(1 − e−bt/m) Ô⇒ ⟨x2⟩ = 2kbT
b

(t + m
b

[1 − e−bt/m])

Compare two limiting cases:

⟨x2⟩ = { kBTt2/b ∶ t ≪ m/b
2kBTt/b ∶ t ≫ m/b

In other words, at short times the particle behaves like it’s traveling in a straight line: its rms dis-
tance from the origin is increasing linearly with time. At longer timescales the particle is properly

4Notice that we are not following Langevin’s derivation precisely: Langevin’s solution ignores the behavior at short timescales and requires ignoring
an exponential term a�er the �rst integration. Otherwise all assumptions are Langevin’s.



thought of as di�using, with D = kBT/b5. Any assumptions made about the nature of the ran-
dom force have not deprived us of the expected behavior at long and short timescales. For a sense of
proportion,m/b ≈ 108Hz for a pollen granule, so the crossover time is on the order of nanoseconds.

While wemay be satis�ed with the sense these results seem tomake, and certainly their consistency
with Einstein’s result, we should pause to re�ect on whether Langevin’s treatment of fr(t) was justi-
�ed. Is x(t) twice di�erentiable, and if not, how can we rationalize writing a di�erential equation in
terms of d2x/dt2? What exactly is fr and is it fair to assume that it behaves as claimed, e.g. ⟨x fr⟩ = 0?
(How do you propose to evaluate the integral of x fr in order to calculate this average?) What does
an integral of such a random function look like?�ese questions and Langevin’s cavalier treatment
gave rise to the �eld of stochastic analysis and to such jabs as:

“A stochastic di�erential equation is introduced in a rigorous fashion to give a precise
meaning to the Langevin equation for the velocity function. �is will avoid the usually
embarrassing situation in which the Langevin equation, involving the second- derivative
of x, is used to �nd a solution x(t) not having a second-derivative.”
– Doob, 1942.

Wiener processes
�e integral of η(t) is an unusual construct which we begin by de�ning as theWiener process Wt :

Wt = ∫ t

0
η(s) ds, η(s) ∼ N (0, 1) and ⟨η(0)η(τ)⟩ = δ(τ)

Heuristically, a Wiener process Wt may be envisioned as a random walk where the step at time t
is ηt , a random variable drawn fromN (0, 1).�e process is named a�er Norbert Wiener, who de-
scribed its properties in the 1920s before going on to found cybernetics, the antecedent of systems
biology. Norbert contributed to bothWorldWars, formalizing the notion of feedback in application
to the development of anti-aircra� guns. He turned his attention to the frontier of neuroscience and
robotics, recruiting Pitts and McCullogh (whose arti�cal neuron we have already studied) to MIT
where they contributed substantially to the �elds of computer science and arti�cial intelligence. (Af-
ter arti�cial intelligence split o� as its own �eld, cybernetics was downgraded to a social science and
prompty began to circle the drain.)

�e process is continuous everywhere but di�erentiable nowhere6. Two de�ning properties are that
W(0) = 0 and thatW(t+τ)−W(t) is normally distributed with mean zero and variance τ7. Notice
that this probability distribution has exactly the same form as the Green’s function found above for
a concentration pro�le, if we chose D = 1/2:

P(W(t + τ) −W(τ) = x ∣ t) = 1√
2πt

e−x2/2t

Now that we know these properties we can revisit the Euler-Maruyama method for simulating sys-
tems of the form:

dx
dt

= µ(x , t) + σ(x , t)η(t) Ô⇒ dx = µ(x , t)dt + σ(x , t) dWt (dWt

dt
= η(t))

5�e latter relation, D = kBT/b, is an instantiation of the �uctuation-dissipation theorem, developed two decades later by our old friend Nyquist.
6Continuity can be shown using Kolmogorov’s continuity theorem; the latter can be shown from the scaling of variance with time for a Wiener

process.
7To see why, consider theWiener process’s current displacement from the original position to be the limit of the sum∑N

i=1 η i dt where dt = τ/N .
�en by the Central Limit�eorem,W(t + τ) −W(t) ∼ N (0 ⋅ N dt, 1 ⋅ N dt) = N (0, τ).



SinceW(t + ∆t) −W(t) = ∆Wt ∼ N (0, τ) =
√

τN (0, 1),

x(t + ∆t) = x(t) + µ(x , t)∆t + σ(x , t)∆Wt = x(t) + µ(x , t)∆t +
√
∆t σ(x , t) η(t),

just as we claimed earlier in the lecture.

Stochastic integrals
Now that we have de�ned the integral of η(t) as aWiener process, consider that for the same system,

x(t) = x(0) + ∫ t

0
µ(x , τ) dτ + ∫ t

0
σ(x , τ) dWτ

If we could take these integrals we’d �nd a closed form for x(t) in terms ofWt , which would be very
useful. Consider two di�erent ways of approximating the second integral by sums of N terms with
t j = j × t

N :

∫ t

0
σ(x , τ) dWτ ≈

N
∑
k=0

σ(x , t j) [Wt j+1 −Wt j] or
N
∑
k=0

[
σ(x , t j+1) + σ(x , t j)

2
] [Wt j+1 −Wt j]

�e only di�erence is in whether we choose to evaluate σ at the beginning or in the middle of the
time step – a distinction that would not make a lick of di�erence as N → ∞ with your standard-
issue Riemann integral. However, the sum is di�erent for stochastic integrals (try simulating it!).
�e sum at le� is the Itō formulation of a stochastic integral; the one at right is the Stratonovich
formulation. As to which is more appropriate, van Kampen notes that for radioactive decay8:

dx = −kx dt +
√
x dWt

and other reactions, it makes sense to evaluate σ at the beginning of the interval, and in fact we
get an incorrect mean if we use the Stratonovich formulation. In principle the Itō formulation is
appropriate when the time correlation in noise terms is precisely zero.

Why does it matter which formulation is chosen? As the inequality of the sums above suggests,
your favorite rules from calculus do not always apply, though they have counterparts. For example, if
Y(Wt) = (Wt)2, then is dY = 2Wt dWt? In the Stratonovich formulation, yes; in the Itō formulation,
dY = 2Wt dWt + dt.�is implies another mind-bender in Itō calculus:

W2
t = Y = Y(0) + 2 ∫ t

0
Wt dWt + ∫ t

0
ds Ô⇒ ∫ t

0
Wt dWt =

1
2
W2

t −
t
2

In the words of Ramon van Handel:
“�e reader is probably le� wondering at this point whether we did not get a little car-
ried away. We started from the intuitive idea of an ordinary di�erential equation driven
by noise. We then concluded that we can not make sense of this as a true di�erential
equation, but only as an integral equation. Next, we concluded that we didn’t really know
what this integral is supposed to be, so we proceeded tomake one up. Nowwe have �nally
reduced the notion of a stochastic di�erential equation to a mathematically meaningful
form, but it is unclear that the objects we have introduced bear any resemblance to the
intuitive picture of a noisy di�erential equation.”
– Caltech ACM 217 lecture notes (2007)

8Note that we have chosen σ(x) =
√
x since we know this is a Poisson process and thus the variance in decays within a time interval is equal to

the mean number of decays in that time interval.



If you begin to question whether we are on to something worthwhile, consider an application of the
method to a stock’s price, x:

dx = µx dt + σx dWt = x [µ dt + σ dWt] µ, σ ∈ R

�e intuition captured here is that stock prices tend to increase exponentially, but with a variable
rate9. (�e formula is only realistic when the stock price stays positive, of course.) �e solution to
this equation is:

x(t) = x(0)e(µ− 12 σ 2)t+σWt

from which we might �nd the probability that x(t) is less than some speci�ed value. We can use
Itō calculus to e.g. construct a “riskless portfolio” and many other lucrative-sounding things. Of
course, analytical solutions to stohastic di�erential equations are useful in biology as well.

On the other hand, much can be learned about the behavior of a stochastic di�erential equation
without having to study stochastic calculus, and this will be our emphasis at the beginning of the
next lecture. You have seen, when we studied the discrete case, that the chemical master equation
allows us to predict the rate of change in the probability distribution of states: we will present the
Fokker-Planck equation, which does the same for SDEs. We will also introduce Wright’s formula
for calculating stationary solutions to the Fokker-Planck equation. Both methods can be wielded
using ordinary calculus.

9For Poisson processes we expect mean and variance to be equal, and thus o�en choose σ(x , t) ∼
√
x. Here we have σ(x) ∼ x implying that

standard deviation and mean are equal: this is a property of the exponential distribution.


