PHYSICS 268BR David R. Nelson Spring 2020 MWF 10:30-11:45am

David Nelson Lyman 325 (495-4331) PHYSICS 268BR nelson@physics.harvard.edu

Renormalization Group Methods in Condensed Matter Physics

TA's: Jong Yeon Lee jlee12@g.harvard.edu & Grace Zhang, ghzhang@g.harvard.edu

Renormalization group ideas have had a major impact on condensed matter physics. We plan to develop and illustrate the theory by studying at least three of the following topics: (1) critical phenomena near four dimensions; (2) quantum critical points in Heisenberg spins; (3) flexural phonons in free-standing graphene; and (4) the fluid dynamics of the forced Navier-Stokes equations.

Course Requirements: Four or five problem sets and a take-home final. Problem sets and the final will each count $\frac{1}{2}$ your grade. Late problem sets will count ε , where $\varepsilon \ll 1$.

Required text: Mehran Kardar, Statistical Physics of Fields

Recommended texts: Nigel Goldenfeld, Lectures on Phase Transitions and the Renormalization Group

David R. Nelson, Defects and Geometry in Condensed Matter Physics

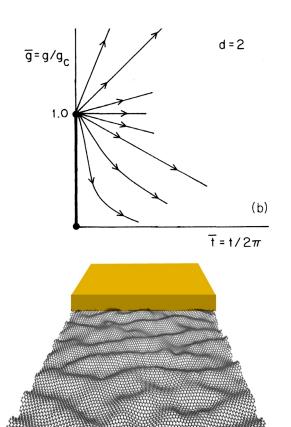
Renormalization Group Methods in Condensed Matter Physics

PHYSICS 268BR David R. Nelson Spring 2020 MWF 10:30–11:45am

1. Critical phenomena in classical spin systems

- a. n-component spin models and Landau theory
- b. Polymer physics and the limit $n \rightarrow 0$
- c. Breakdown of Landau theory in low dimensions
- d. Fluctuations and physics in 4ϵ and $2 + \epsilon$ dimensions

2. Quantum critical points in quantum rotor models


- a. Transfer matrices and path integrals in imaginary time
- b. Renormalization group for quantum antiferromagnets in 2+1 dimensions
- c. Spin S quantum ferromagnets and antiferromagnets at low temperatures

3. Flexural phonons in free-standing graphene

- a. Continuum elasticity theory for sheets and ribbons
- b. Renormalization group for flexural phonons
- c. Scale-dependent bending rigidity and Young's modulus

4. Dynamics of the forced Navier-Stokes equations

- a. Fluid mechanics and Reynolds numbers
- b. Dynamical renormalization group
- c. Forced Navier-Stokes equations near 4 dimensions

