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1 Bottle Calibration
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2 All About Functions

1. Consider the time that it would take to pick all the apples at one particular orchard as a function of
the number of workers picking the apples.

(a) Sketch a graph of the time it takes to harvest the crop of apples as a function of the number of
people picking apples. Label your axes.
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(b) Is the graph you drew a straight line? Why or why not?

(c) Is the graph you drew continuous or discontinuous? Explain.

(d) Does the graph you drew intersect the horizontal axis? The vertical axis? If so, where? If not,
why not?

2. In each part, think of a function f(x) = whose graph looks like the given picture.

(a)
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(b)
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3. Sketch the graph of each of the following functions.

(a) f(x) =
1

x
.

(b) f(x) = −2x+ 1.

(c) f(x) =
1

x2
.

(d) f(x) =
√
x.
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4. Come up with definitions of even and odd:

• A function f(x) is even if .

• A function f(x) is odd if .

Use the definitions to decide whether each of the following is even, odd, or neither.

(a) f(x) = −3x4 + 6x2 + 1.

(b) g(x) = x3 + x2 + 1.
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3 Modeling with Functions

1. A Harvard professor decides to exercise the traditional “grazing rights” that come with the job, namely
the right to graze animals in Harvard Yard(1). He wants to have some room for a cow to roam in
without escaping, so he decides to build a rectangular fenced-in pen, using 28 feet of wire fencing. He
is convinced that it does not matter what dimensions his fenced-in-pen is, the area will be constant.
Help the professor see how area changes as length changes.

(a) Understand Problem

(b) Make a Plan

(c) Execute Plan

(d) Reflect

(1)See news.harvard.edu/gazette/story/2009/09/grazing-rights/.

news.harvard.edu/gazette/story/2009/09/grazing-rights/
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2. A cistern for storing water is in the shape of a right circular cone with radius 10 feet and height 40
feet. The volume of a cone with radius R and height H is 1

3πR
2H.

(a) Suppose the cistern is filled part-way with water. Express the height of the water as a function
of the radius of the surface of the water.

(b) Express the volume of water in the cistern as a function of the radius of the surface area of the
water. What are the domain and range of this function?

(c) Express the volume of water in the cistern as a function of the height of water in the cistern.
What are the domain and range of this function?

(d) Now, suppose you want to find the calibration function C for the cistern, which takes as input the
volume of water in the cistern and produces as output the height of water in the cistern. Sketch
a graph of C(v). What are the domain and range of C(v)?

(e) Can you find a formula for C(v)?
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3. The cost of sending a first-class large envelope through the U.S. Postal Service depends on the weight
of the letter. As of September 2016, it costs $0.94 for the first 3 ounces and $0.21 for each additional
ounce up to a maximum of 8 ounces.

(a) Draw a graph of the cost of package as a function of its weight.

(b) What are the domain and range of the cost function?

(c) Is the function continuous?
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4. Write a formula for a function f(x) whose graph looks like the following picture.

2 4 6 8 10

2

4

6

8

10

5. Let d(x) be the distance between x and 5 on the number line.

(a) What is the domain of d(x)? What is the range of d(x)?

(b) For what values of x is d(x) = 0?

(c) For what values of x is d(x) = 1?

(d) For what values of x is d(x) > 1?

(e) Graph d(x).

(f) Write a formula for d(x).
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4 More on Functions; Average Rates of Change

1. Imagine a road trip from Route 66 from Flagstaff, Arizona, through New Mexico and Texas and into
Oklahoma. Two functions could help describe this trip:

i. The function f gives the number of miles traveled t hours into the trip, where t = 0 denotes the
beginning of the trip.

ii. The function g gives the car’s speed t hours into the trip, where t = 0 denotes the beginning of
the trip.

Each of these functions is closely related to one of the instruments on the car’s dashboard. At time t,
f(t) corresponds to the change in the reading since the friends set off from Flagstaff.
At that moment, g(t) corresponds to the reading.

Suppose they pass a sign that reads “entering Gallup, New Mexico,” T hours into the trip. Write the
following expressions using functional notation wherever appropriate.

(a) The car’s speed two hours before entering Gallup.

(b) The car’s average speed in the first 3 hours of the trip.

(c) The car’s average speed in the second three hours of the trip.

(d) The car’s average speed in the half an hour after getting to Gallup, New Mexico.

2. Consider again the functions from the previous problem.

Interpret the following quantities in words.

(a)
f(T + 5)− f(T )

5

(b)
g(T + 0.1)− g(T )

0.1
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3. Based on U.S. Census data(2), the population of Massachusetts between 2000 and 2008 can be modeled
by the function P (t) = 6360 + 60t− 15t2 + 1.2t3, where P (t) gives the number of thousands of people
in Massachusetts t years after July 1, 2000.

0 1 2 3 4 5 6 7 8

6350

6400

6450

6500

(a) According to this model, what was the population of Massachusetts on July 1, 2000?

(b) What was the change in the population population between July 1, 2000 and July 1, 2001? Use
functional notation.

(c) What was the average rate of change of the population of Massachusetts between July 1, 2000
and July 1, 2004? What are the units of your answer?

(d) What was the average rate of change of the population of Massachusetts between July 1, 2004
and July 1, 2008?

(2)http://factfinder.census.gov/servlet/GCTTable?_bm=y&-geo_id=01000US&-ds_name=PEP_2008_EST&-_lang=en&-

redoLog=false&-mt_name=PEP_2008_EST_GCTT1_US40&-format=US-40&-CONTEXT=gct

http://factfinder.census.gov/servlet/GCTTable?_bm=y&-geo_id=01000US&-ds_name=PEP_2008_EST&-_lang=en&-redoLog=false&-mt_name=PEP_2008_EST_GCTT1_US40&-format=US-40&-CONTEXT=gct
http://factfinder.census.gov/servlet/GCTTable?_bm=y&-geo_id=01000US&-ds_name=PEP_2008_EST&-_lang=en&-redoLog=false&-mt_name=PEP_2008_EST_GCTT1_US40&-format=US-40&-CONTEXT=gct
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4. A swimmer is swimming a 100 m long race (one lap in a 50 m long pool). Let s(t) be the swimmer’s
distance from the starting position t seconds after the start of the race.

(a) Which of the following is a more reasonable graph for s(t)? Why?

10 20 30 40 50
t

25

50

75

100

s

10 20 30 40 50
t

10

20

30

40

50

s

(A) (B)

(b) According to the graph you chose, how long did it take the swimmer to finish the race?

(c) What was the swimmer’s average velocity over the first 20 seconds of the race?

(d) What was the swimmer’s average velocity over the last 50 m of the race?

(e) What is the difference between velocity and speed?

5. Suppose f(x) is a linear function defined on (−∞,∞). How does the average rate of change of f
on [0, 5] compare to the average rate of change of f on [0, 500]? What about the average rate of
change of f on [−50, 2]?
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5 Altering Functions

1. In each part, the graph of f(x) =
√
x is shown. Write a formula for the specified function, and sketch

its graph. Describe the relationship between the graph of the new function and the graph of f(x).

(a) f(x− 2) =

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

Description:

(b) f(x)− 2 =

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

Description:

(c) f(−x) =

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

Description:

(d) −f(x) =

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

Description:

2. (a) Sketch the graph of f(x) = x2 − 4. Where are its x- and y-intercepts?
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Let f(x) = x2 − 4. In each part, write a formula for the specified function, and graph it together with
f(x). Describe in words how the graph of the new function is related to the graph of f(x).

(b) f(2x) =

-8 -6 -4 -2 2 4 6 8

-8

-6

-4

-2

2

4

6

8

Description:

(c) 2f(x) =

-8 -6 -4 -2 2 4 6 8

-8

-6

-4

-2

2

4

6

8

Description:

(d) −2f(x) =

-8 -6 -4 -2 2 4 6 8

-8

-6

-4

-2

2

4

6

8

Description:

(e) f
(x

2

)
=

-8 -6 -4 -2 2 4 6 8

-8

-6

-4

-2

2

4

6

8

Description:

(f)
f(x)

2
=

-8 -6 -4 -2 2 4 6 8

-8

-6

-4

-2

2

4

6

8

Description:
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3. Sketch the following, and label any asymptotes. For (b) - (e), explain how the graph is related to the
graph of 1

x2 .

(a) y =
1

x2
. (b) y =

3

x2
− 1.

(c) y = 3

(
1

x2
− 1

)
. (d) y =

3

(x+ 2)2
− 1.

(e) y = − 3

(x+ 2)2
− 1.
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4. Here is the graph of a function f .

-3 -2 -1 1 2 3 4 5

-4

-3

-2

-1

1

2

3

4

(a) What is the domain of f?

(b) What is the range of f?

(c) Sketch graphs of the following functions. Where are the two endpoints of the graph?

i. f(−2x) ii. −2f(x)

iii. −2f(x+ 1) + 3 iv. −2f(2x) + 3



Linear Functions Local Linearity 22

6 Linear Functions Local Linearity

1. Here is some sunset/sunrise information for Cambridge, MA in 2018:

19 Sept 20 Sept 21 Sep 22 Sept

Sunrise 6:29 am 6:30 am 6:31 am 6:32 am

Sunset 6:46 pm 6:44 pm 6:43 pm 6:41 pm

(a) Estimate when the sun will rise on September 30th.

(b) Would you feel comfortable using the same technique to estimate the sunrise and sunset in Novem-
ber? In March? Why or why not?
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2. At the Mauna Loa observatory in Hawaii, the amount of carbon dioxide in the atmosphere has been
measured every month since 1958. Here is a graph of the data.

Generally, the carbon dioxide concentration each year is highest in May and lowest in October.

(a) A scientist is looking at some recent measurements, from August 2017 (405 ppm) and May 2017
(410 ppm). If she uses local linearity to predict the CO2 concentration in September 2017, do you
expect her to get a reasonable estimate? What if she uses the same method to predict the CO2

concentration in May 2018?

(b) Find the equation of a line that the scientist could use to predict the CO2 levels in September
2017.
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3. Find an equation for each of the following lines.

(a) The line with slope − 1
5 passing through the point (−1, 5).

(b) The line passing through the points (0, p) and (q, 0).

(c) The line passing through the point (
√

3, 1) and parallel to the line
√

3x− 2y = 5.
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4. Economists use demand curves to express the relationship between the price of an item and the number
of items demanded by consumers. Below is the demand curve for a certain good. p is the price per item
measured in dollars, and q is the quantity of the good demanded (i.e., the number of items demanded).

p

q

H700, 2400L

H550, 3000L

(a) Based on the graph above, express the demand q as a function of the price p.

(b) In words, explain the meaning of the slope of the line.

5. Molly has just started a part time job that pay $10 per hour for the first 6 hours that she works each
week, and $12 per hour for each hour thereafter, up to a total of 15 hours per week.

(a) Find an expression for the function P (t) whose input is the number of hours that Molly works in
a week, and whose output is her income for that week.

(b) Sketch the graph of P (t).

(c) Graph P ′(t), where P ′(t) is the slope function, which gives the slope at every point on the graph
of P . (Are there places where the slope is not defined?)

(d) What is the practical meaning of P ′(t)? Include units in your answer.



Modeling and Interpreting Slope 26

7 Modeling and Interpreting Slope

Often we can use a line to help us approximate the values of a function on a curve. We use a line because
the line is sometimes much easier to work with than the curve itself. Here is an example.

1. Sketch the graph of f(x) =
√
x. Find the equation of the secant line through the points whose x−

coordinates are 4 and 9.

(a) What is the average rate of change of the function f(x) =
√
x on an interval [4, 9]? How would

you interpret this on the graph of f(x)?

(b) Use the secant line you found to estimate
√

5. Is your estimate too high or too low? Explain.

(c) Use the secant line you found to estimate
√

3. Is your estimate too high or too low? Explain.
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(d) Find the slope of the secant line through the points where x = 4 and x = 4 + h. Your answer will
be in terms of h.



Modeling and Interpreting Slope 28

2. Thomas Wolfe’s Royalties for The Story of a Novel (3)

In lieu of a straight royalty percentage on sales of his book, The Story of a Novel, Thomas Wolfe agreed
to accept a sliding scale of 10% on the first 3000 copies sold, 20% on the next 1500 copies, and 30%
on all copies after that. The book was priced at $2.00. (4)

(a) Write a function R(x) that gives Wolfe’s royalties as a function of x, the number of books sold.

(b) Graph R(x).

(c) Solve R(x) = 900. What does this equation mean?

(3)Thomas Wolfe was an author born in Asheville, North Carolina, in 1900. His first novel, Look Homeward Angel, was a
thinly veiled fiction that gave such scathingly accurate portrayals of well-known townspeople that despite the novels enthusiastic
reception nation- wide, Wolfe felt he received a cool welcome in his hometown. He proceeded to write �You Can’t Go Home
Again. The problem you are asked to consider involves one of Wolfe’s lesser-known novels.
(4)(Elizabeth Nowell, Thomas Wolfe: A Biography, Doubleday, Garden City, NY, 1960. Reported percents have been modified

for computational ease.)
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(d) Graph R′(x), where R′(x) is the slope function, a function giving the slope of the graph of R.

(e) What is the practical meaning of R′(x)? Include units in your answer.
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8 Definition of the Derivative

1. A rocket is launched straight up into the air. The function f(t) = t2 describes the rocket’s height in
meters t seconds after liftoff. Suppose you’d like to know the rocket’s velocity 5 seconds after liftoff.

(a) Sketch the graph of the position function. (Would this be a good model for the position function
in the latter portion of the journey?)

(b) How can the instantaneous velocity of the rocket be approximated at t = 5 seconds? Write an
expression that approximates the instantaneous velocity.

(c) How could we find the exact instantaneous velocity of the rocket at t = 5 seconds? How would
you visualize this instantaneous velocity graphically?
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Definition and interpretation of the derivative. If we have a function f(x) and a number a, we define
the derivative of f at a, written f ′(a), to be

f ′(a) = or

We often read f ′(a) as “f prime of a.”

• We interpret f ′(a) as the instantaneous rate of change of f at x = a.

• Graphically, we visualize f ′(a) as the slope of the line tangent to the graph of f at x = a.

2. Let f(x) =
1

4x
.

(a) Sketch the graph of f(x) and the line tangent to f at x = 1
4 . Is the slope of the line positive or

negative?

(b) Calculate f ′
(
1
4

)
exactly using the definition of the derivative. Is this consistent with your answer

to (a)?

(c) What is the equation of the line tangent to f at x = 1
4?

(d) Can you think of another way to check whether your answer to (b) is reasonable?

(e) Would you expect f ′(1) to be positive or negative? How would that compare with f ′
(
1
4

)
?

(f) Would you expect f ′
(−1

4

)
to be positive or negative? How would that compare with f ′

(
1
4

)
?
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3. Let A(r) be the area of a circle of radius r cm.

(a) Find the derivative A′(5). What are its units? What does it represent?

(b) Can you draw a picture involving a circle that explains why your answer makes sense?
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4. Peter is roasting a 14 lb turkey as a test run for Thanksgiving dinner. He begins at noon. At 1:00pm,
he checks on the temperature and discovers that it has an internal reading of 35.6◦C,(5) and it’s rising
at an instantaneous rate of 0.25◦C per minute.

(a) Approximate the temperature of the turkey at 1:06pm.

(b) Let I(t) be the turkey’s internal temperature (in ◦C) t minutes after noon. Use functional notation
to express what you were told about the turkey.

(c) Here is a graph of I(t). Use a sketch to explain the approximation you made in (a).

60 120 180 240
t

I

(d) Based on your sketch, was your approximation too high or too low?

(e) Would you be comfortable using the same method to predict the turkey’s temperature at 3 pm?
Explain.

(5)According to the USDA, a turkey should be roasted to an internal temperature of 73◦C.
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9 The Derivative Function

1. Let f(t) = t2.

(a) We can define a new function f ′(t) that gives slope of the line tangent to the graph of f at the
point (t,f(t)). What makes this a function?

(b) For what values of t will f ′(t) be positive?

(c) For what values of t will f ′(t) be negative?

(d) Before we calculate f ′(t), describe some qualities

(e) Write a formula for f ′(t).



The Derivative Function 35

2. Gromit has been growing a giant squash for Tottington Hall’s annual Giant Vegetable Competition.
He has carefully tracked his squash’s length and weight. Let w(`) be the squash’s mass in kg when its
length is ` cm.

(a) What are the units of w′(`)?

(b) Another notation for w′(`) is
dw

d`
. Do you expect

dw

d`
to be positive or negative? Why?

(c) Suppose w′(70) = 8. (This statement can also be written as
dw

d`

∣∣∣∣
`=70

= 8.) Which is the following

is the most reasonable conclusion?

A. It takes 70 days for the squash to grow to be 8 kg.

B. When the squash is 70 cm long, it weighs 8 kg.

C. When the squash is 70 cm longer than its current length, it will weigh 8 kg more than it
currently does.

D. When the squash grows from 70 cm to 71 cm, it will gain about 8 kg in mass.

(d) Interpret the statement w′(105) = 10 in words.
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3. (a) Sketch the graph of |x− 1|.

(b) Sketch the graph of
d

dx
|x−1|. (The notation

d

dx
|x−1| is shorthand for “the derivative of |x−1|”.)

There’s one particularly interesting value of x here; what’s going on at that value of x?

(c) Generalize. Looking at the graph of g(x), what is one way we could know that g′(x) does not
exist.
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4. Let f(x) =

∣∣∣∣x4 − 9x2 + 20

x2 − 4

∣∣∣∣. Sketch the graph of f , and then sketch the graph of f ′.
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10 Functions and their Derivatives

1. Velocity and speed, average and instantaneous. The #68 bus runs between Harvard Square
and Kendall Square. The first bus leaves Harvard Square at 6:35 am. Let d(t) be the bus’s distance
(in miles) from Harvard Square t minutes after 6:35 am. Here is the graph of d(t):

5 10 15 20 25

0.5

1

1.5

(a) How many miles long is the bus route?

(b) At what time does the bus reach Kendall Square? At what time does it return to Harvard Square?

(c) Sketch a graph showing the bus’s velocity t minutes after 6:35 am.

(d) Sketch a graph showing the bus’s speed t minutes after 6:35 am.
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(e) What is the bus’s average velocity over this round trip?

(f) What is the bus’s average speed over this round trip?

(g) At roughly what times does the bus have positive acceleration? At roughly what times does it
have negative acceleration?

(h) Below is a graph that represents v(t), the velocity of the bus t minutes after 6:35 am. Sketch a
graph for the buses acceleration t minutes after 6:35 am.

5 10 15 20 25 5 10 15 20 25

(i) Draw some connections between the graph of the acceleration and the velocity.
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2. In each part, you are given the graph of a function f(x). Sketch a graph of f ′(x).

(a)

−10 −5 5 10

(b)

−1 −0.5 0.5 1

(c) What strategies were particularly helpful?
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3. Below is a graph of g′(x). Draw a graph for g(x).

−10 −5 5 10 −10 −5 5 10

4. Recap: What does the graph of f tell you about f ′? What does the graph of f ′ tell you about f?

Fill in the following charts. If a given piece of information about one function tells you nothing about
the other function, put an NA in the corresponding box.
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11 Limits

1. If f(x) = x2, calculate f ′(7) using the definition of the derivative.

Limits. You can think of the notation lim
x→a

f(x) as shorthand for:

“What number (if any) does f(x) approach as x gets really close to a,
without actually being equal to a?”

This number is called the limit of f(x) as x approaches a.

More precisely, saying lim
x→a

f(x) = L means that we can make the values of f(x) as close as we like

to L by making x sufficiently close to (but not equal to) a.
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2. In each of the following examples, what is lim
x→0

f(x)? What is f(0)?

(a)

-6 -4 -2 2 4 6

1

f

(b)

-6 -4 -2 2 4 6

1

f

(c)

-0.05 0.05

0.1

f

If a is a number, x can get really close to a from two sides, the left and the right. So, we also look at
one-sided limits:

• The limit of f(x) as x approaches a from the left , lim
x→a−

f(x), is the number that f(x) approaches as

x gets really close to a, while remaining slightly less than a.

• The limit of f(x) as x approaches a from the right , lim
x→a+

f(x), is the number that f(x) approaches

as x gets really close to a, while remaining slightly greater than a.
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3. Sketch an example of a function f for which lim
w→2−

f(w) = 1 and lim
w→2+

f(w) = 3. Can you sketch an

example which also has the property that lim
w→2

f(w) exists?

4. Use the definition of the derivative to find f ′(0) for f(x) = |x|.
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12 Working with Limits

1. Sketch the graph of f(x) = 1
x , and use it to find the following limits.

(a) lim
x→0+

1
x

(b) lim
x→0−

1
x

(c) lim
x→0

1
x

(d) lim
x→∞

1
x

(e) lim
x→−∞

1
x

2. Calculate the following limits:

(a) lim
x→∞

x2 + x+ 1

x+ 1
(b) lim

x→∞

x2 + x+ 1

x2 + 1
(c) lim

x→∞

x2 + x+ 1

x3 + 1
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3. The graphs of f and g are given below.

-3 -2 -1 1 2 3

-2

-1

1

2f

-3 -2 -1 1 2 3

-2

-1

1

2g

Evaluate each of the following quantities.

(a) lim
x→2

g(x)

(b) g(2)

(c) lim
x→2

f(x)

g(x)

(d) lim
x→1

f(x)

g(x)

(e) lim
x→−1

f(x)

g(x)

(f) lim
x→−2

f(x)

g(x)



Working with Limits 47

4. When calculating limits what should your strategies be?

5. Sketch a graph of the relevant function, and use it to find the specified limit.

(a) lim
x→2+

(
3− 4

x− 2

)
(b) lim

x→2−

(
3− 4

x− 2

)
(c) lim

x→∞

(
3− 4

x− 2

)
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13 Limit Laws and Continuity

1. Warm-up (from PS13). When is lim
x→a

f(x) = f(a)? That is, when can you just plug in to evaluate

a limit?

(a) Sketch some functions f(x) for which lim
x→3

f(x) 6= f(3). Try to draw a few examples that look

really different!

(b) Sketch some functions f(x) for which lim
x→3

f(x) = f(3). Try to draw a few examples that look

really different!

2. In the past, we calculated f ′(7) for f(x) = x2:

f ′(7) = lim
h→0

f(7 + h)− f(7)

h
= lim
h→0

(7 + h)2 − 72

h
by the definition of the derivative

= lim
h→0

h2 + 14h+��49−��49

h
= lim
h→0

h(h+ 14)

h
by algebra

If we plug in 0 for h, what is the result?

Does h = 0 as we take this limit? For all nonzero values of h, what is h(h+14)
h ?

= lim
h→0

for values of h 6= 0

=
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Whether limits exist and agree is directly connected to whether their graphs can be sketched without
lifting our pencil. As a result, we can update our definition of continuity.

A function is considered continuous at some point x = a if

lim
x→a+

f(x) = lim
x→a−

f(x) = f(a)

.

That is, a function is said to be continuous at some point if the right and left hand limits of the
function as we approach the point are the same, and the value of those limits is the function’s value
at that point.

3. Here is the graph of a function f(x).

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

(a) At what values of x in (−4, 4) is f(x) not continuous? In other words, at what values of x does
f(x) have a discontinuity?

(b) At what values of x in (−4, 4) is f(x) not differentiable?
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Now that we’re more comfortable with limits, we can get more technical about what it means
for a function to be differentiable.

We consider a function to be differentiable at some point x = a if the two-sided limit

lim
h→0

f(a+ h)− f(a)

h
exists.

(c) Decide whether each of the following statements is true or false. If it is false, give an example
that shows that it’s false (such an example is known as a counterexample).

i. If f(x) is continuous at x = a, then f(x) is differentiable at x = a.

ii. If f(x) is differentiable at x = a, then f(x) is continuous at x = a.
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4. In each part, can you sketch a continuous function f(x) defined on [−4, 3] which has all three of the
given properties, or is it impossible to do so?

If it is impossible, would it become possible if f did not have to be continuous?

(a) • f(−4) = 2
• f(3) = 5
• f has no zeros in [−4, 3]

(b) • f(−4) = 2
• f(3) = 5
• f has a zero in [−4, 3]

(c) • f(−4) = 2
• f(3) = −1
• f has no zeros in [−4, 3]

(d) • f(−4) = 2
• f(3) = −1
• f does not attain the value 1 on [−4, 3]
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Intermediate Value Theorem. If f is continuous on the closed interval [a, b] and f(a) = A,
f(b) = B, then somewhere in the interval [a, b], f attains every value between A and B.

5. Is the following argument correct or incorrect? Why?

Imagine that tonight Harvard Football Team beats Holly Cross 29-13. Since Harvard will
0 points at the beginning of the game and 29 at the end, the Intermediate Value Theorem
says that Harvard must will have exactly 25 points at some moment in the game.

6. Let f be the function defined by

f(x) =

{
−x2 + 1 for x ≤ 1

ax+ b for x > 1

(a) For what values of a and b will f be continuous at x = 1?

(b) Are there any values of a and b for which f will be differentiable at x = 1?
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14 Patterns in Paths

1. Jo desperately needs some coffee, and it’s a short walk to the nearest coffee shop. If she must walk
along the roads shown, how many different paths can she take to get to the coffee shop as quickly as
possible?

Jo

2. In the picture below, how many ways can Jo get to each intersection if she starts from the top point?

1

What patterns do you notice? Can you explain them?
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3. (a) Ron needs to expand (L + R)2, and his first guess is that the answer is L2 + R2. Help Ron
understand why this is incorrect, and explain the correct answer to him.

(b) Can you visualize each term in the expansion as a path?

4. (a) Use the distributive property to compute (L+R)3.

(b) Can you visualize each term in the expansion as a path?

5. Use Pascal’s Triangle to calculate (L+R)4.

6. (a) Calculate (x+ y)6.

(b) What is (x− z)6?
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15 Differentiation Rules

You have found the derivatives of many functions – fill in the table below.

function derivative

3

x

x2

x−1 = 1
x

x−2 = 1
x2

1. Use the definition of the derivative to find
d

dx
(x4). Hint: you might want to use Pascal’s triangle.

2. Let f(x) = xn. Use your results to make a conjecture about f ′(x).

3. Verify your conjecture by using the limit definition of the derivative to find
d

dx
(xn).
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4. What do you think the derivative of f(x) + g(x) is? What do you think the derivative of cf(x) is?

(a) How can we make sense of your two conjectures?

(b) Use the limit definition to support your conjecture.

5. Let f(x) = x2 + x+ 1 and g(x) = 3x2 + 1.

(a) Calculate f ′(x).

(b) Calculate g′(x).

(c) What is the derivative of f(x)g(x)?
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6. At noon one day, Jack plants a magical bean. To his delight, it grows quickly into a giant beanstalk.
Let f(t) be the beanstalk’s height in feet t hours after noon.

(a) If f ′(3) = 7, roughly how much does the beanstalk grow between 3:00 pm and 3:06 pm?

(b) More generally, if h is a fairly small positive number, write an approximation for the amount that
the beanstalk grows between times t and t+ h.

7. Use the limit definition to calculate the derivative of f(x)g(x).
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Differentiation Rules to Remember!

Civilization advances by extending the number of important operations which we can per-
form without thinking about them. – Alfred Whitehead, mathematician & philosopher

• Power Rule:

• Sum Rule:
d

dx
[f(x) + g(x)] =

• Constant Multiple Rule: If c is a constant, then
d

dx
[cf(x)] =

• Product Rule:
d

dx
[f(x) · g(x)] =

• Quotient Rule (this is on your homework!):
d

dx

[
f(x)

g(x)

]
=
f ′(x)g(x)− f(x)g′(x)

g(x)g(x)
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16 Linear Approximation

1. Walt is designing a 18-story geodesic sphere that takes guests on a time machine-themed experience.
Walt knows the geodesic sphere will require about 10 thousand equilateral triangles. If he wants the
side length of each equilateral triangle to be 1 foot, what is the surface area of Walt’s imaginative idea?
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2. How would you approximate
√

3?

(a)

(b)
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3. In this problem, you’ll use the Product Rule to find the derivative of
√
x. We know that

√
x ·
√
x = x.

If we let f(x) =
√
x, we can rewrite this fact as: f(x)f(x) = x.

(a) Differentiate both sides of the equation f(x)f(x) = x to write a new equation involving f(x) and
f ′(x). (You’ll need to use the Product Rule to differentiate the left side.)

(b) Solve the equation you wrote in (a) for f ′(x).

(c) Why does the power rule we learned in the last class not just quickly apply here?

4. How could you approximate 3
√

9?

(a) Method 1:

(b) Method 2:
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17 Constant Percent Change

1. On his birthday last year, Kyle invested $1,000 in a small company. Good move Kyle. This year, he
discovered that his investment had grown by 10% and is now worth $1,100.

(a) Investment plan version 1:

i. Suppose that the investment grows at a constant rate. Make a table that shows the value of
his investment over the course of the next 5 years.

ii. Write down a function f(x) that gives the balance in his bank account x years after his initial
deposit.

iii. By what percentage will the investment increase during the first year? During the second
year? What about in during the n−th year?
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(b) Investment plan version 2:

i. Suppose Kyle’s investment grows by 10% per year. Make a table that shows the value of his
investment over the course of the next 5 years.

ii. Write down a function g(x) that gives the balance in his bank account x years after his initial
deposit.

Exponential functions are functions whose are

2. In a certain town in 1975, the amount of whole milk consumed by the average resident was 20 gallons
(over the entire year). Since 1975, that consumption has been decreasing at a rate of 2% per year.
Write a formula for M(t), the amount of milk consumed by the average resident in year t, where t is
measured in years since 1975.
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3. On the following set of axes, graph y = 2x, y = 3x, and y =
(
1
2

)x
. Label all intercepts and asymptotes.

(Also indicate which graph is which.)

4. If f(x) = 2x, what can you say about the signs of f ′(x) and f ′′(x)?

5. Dolby is having a hard time remembering his exponential rules. He can’t remember which of the rules
below, if any, are correct. Identify the correct rules and help give Dolby by giving him a strategy to
decide which rules are correct.

(a) xaxb = xab

(b) xaxb = xa+b

(c) (xa)b = xab

(d) (xa)b = xa+b
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6. Zoe is growing some bacteria in a petri dish. Suppose the petri dish starts with 100 bacteria, and the
number of bacteria doubles each hour - i.e. increases by 100%. Let B(t) be the number of bacteria in
the petri dish after t hours.

(a) Fill out the following table:

t B(t) (bacteria after t hours)

0 100

1

2

3

4

5

(b) Write a formula for B(t).
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18 Applications of Exponentials

1. Finance

(a) Marius decides to open a bank account with an opening deposit of $1000. Suppose that the
account earns a nominal annual interest rate of 6%, compounded annually.(6) Assuming Marius
completely ignores the account after he opens it (so he doesn’t make any deposits or withdrawals),
how much money does the account have t years after Marius opens it? Can you graph his money
vs. time?

(b) Suppose that Marius had instead deposited his money in a bank that offered quarterly compound-
ing (but everything else was the same). That is, the bank offers a 6% nominal annual interest
rate with 4 compounding periods a year. How much money would the account have after t years?

(c) In this account, what is the percent increase in money per year? (This is called the annual
percentage yield of the account.)

(d) What if Marius had used a bank that offered n compounding periods a year? How much money
would the account have after t years, and what would be the annual percentage yield?

(6)For economists, there are two uses of the phrase “nominal interest rate”; one is trying to account for the effects of inflation.
We’re using it in the other sense, which will be easier to understand a bit later.
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2. Chemistry. The half-life of the radioactive isotope radium-226 is approximately 1600 years.

(a) Suppose you have a sample of radium-226 whose size in mg is currently S0. Write a formula for
the amount of radium-226 that remains in the sample at time t, where t is measured in centuries
and t = 0 means the current time.

(b) Suppose you have a sample of radium-226. By what percent does the amount of radium-226 in
the sample decrease per century?

(c) How many years would it take a 100 mg sample of radium-226 to decay to 25 mg?

(d) About how many years would it take a 100 mg sample of radium-226 to decay to 5 mg?
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3. Sociology. The population in a certain area of the country is increasing. In 1990 the population was
100,000, and by 2010 it was 200,000.

(a) If the population has been increasing linearly, was the population in 2000 equal to 150,000, greater
than 150,000, or less than 150,000? Explain your reasoning.

(b) If the population has been increasing exponentially, was the population in 2000 equal to 150,000,
greater than 150,000, or less than 150,000? Explain your reasoning.

(c) If the population has been increasing exponentially and continues to do so, what do you expect
the population to be in 2020?

(d) If population is increasing linearly, in what year will there be a million people in this geographic
region?

(e) If population is increasing exponentially, in what year will there be a million people in this
geographic region?
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4. Biology and Public Health Escherichia coli, better known as E. coli, is a bacterium that can
cause peritonitis, a potentially fatal disease. E. coli is sometimes found in ground beef, so food safety
inspectors would like to be able to test for it. The challenge is to be able to take a tiny sample of
ground beef (so that the rest can be sold to customers) and check the sample for E. coli, even if the
sample has just a single bacterium.

However, DNA tests are not sensitive enough to detect just a single bacterium, so the solution food
inspectors have is to put the ground beef sample in “a broth infused with nutrients that E. coli likes
to eat, put in a warm place to rest for 10 hours” (7). Let’s understand why. Under such conditions,
it’s estimated that a population of E. coli doubles every 30 minutes. Suppose that at time t = 0, t
measured in minutes, the sample has just a single E. coli bacterium.

(a) First, make a table for the number of bacteria:

t
# of bacteria
after t minutes

0

(b) Write a formula for the number of E. coli present t minutes later.

(c) Draw a graph of the number of E. coli t minutes later.

(d) How many bacteria are there after 10 hours?

(e) Write a formula for the number of E. coli present t hours later.

(7)(http://www.nytimes.com/2015/04/05/business/private-eyes-in-the-grocery-aisles.html)

http://www.nytimes.com/2015/04/05/business/private-eyes-in-the-grocery-aisles.html
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19 The Derivative of an Exponential Function

1.

f(x) = 2x

x f(x) estimate of f ′(x)

0 1 0.693

1 2 1.386

2 4 2.774

3 8 5.547

4 16 11.094

g(x) = 3x

x g(x) estimate of g′(x)

0 1 1.099

1 3 3.298

2 9 9.893

3 27 29.679

4 81 89.020

h(x) = 10x

x h(x) estimate of h′(x)

0 1 2.305

1 10 23.052

2 100 230.524

3 1000 2305.238

4 10,000 23052.381

What do you observe?(8)

2. Let f(x) = 2x.

(a) Sketch a graph of f ′(x).

(b) Using the limit definition of the derivative, write a limit that is equal to f ′(0).

(c) Using the limit definition of the derivative, write a limit that is equal to f ′(x). How does this
relate to f ′(0)?

(8)If you had just done the case 2x this might have been more challenging!
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3. (a) If f(x) = bx (where b is a positive constant), what can you say about f ′(x)?

3

(b) Suppose g(x) is an exponential function; that is, g(x) = C · bx for some C and some b > 0. What
can you say about the relationship between g′(x) and g(x)?
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Let A and B be two changing quantities.

We say that A and B are proportional to one another if one is always a constant multiple of the
other, i.e.

A = kB

for some constant k (called the constant of proportionality).

4. (a) How do we define e?

(b) About how big is e?

(c) If k is any constant, what is
d

dx

(
ekx
)
?
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5. Use the tangent line approximation of ex at x = 0 to approximate e0.1. Is your estimate an over
estimate or an underestimate?
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20 Exponential Function Wrap Up

1. You have recently published a video to YouTube. When there are 80,000 views, you notice that rate
at which people are viewing your video is 1000 people per day. Later when your video has 100,000
views, you notice that the rate at which people are viewing your video is 5000 people per day. If you
wanted to model how many views your video had as a function of time, would a linear model or an
exponential model be a good choice? Explain your answer.

2. Find an exponential function whose graph through the points (4, 8) and (6, 10).

3. A population of bacteria in a petri dish is growing exponentially. When there are 8000 bacteria, the
population is growing at a rate of 400 bacteria per hour. How quickly (in bacteria/hr) is the bacteria
population growing when there are 10,000 bacteria in the dish?

If there were 1000 bacteria at time t = 0 (with t in hours), which of the following equations for P (t)
is correct?

(a) P (t) = 1000e20t (b) P (t) = 1000e
t
20 (c) P (t) = 50et (d) P (t) = 1000

(
e
20

)t
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4. The function f(x) =
3x

ex
is an example of a surge function. Surge functions are used to model many

situations. For instance, the amount of an IV drug in the blood x minutes after the drug is administered
can be modeled as a surge function.

(a) Compute f ′(x).

(b) For what values of x is f ′(x) positive? For what values of x is f ′(x) negative?

(c) For what values of x is f(x) concave up? For what values is it concave down? Give exact answers.

(d) Find lim
x→−∞

f(x).

(e) Use your answers to the previous parts to sketch a graph of f(x).
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5. A population of mosquitoes is growing exponentially. When there are 5000 mosquitoes, the mosquito
population is growing at a rate of 100 mosquitoes per month.

(a) We know that the mosquito population is changing at a rate proportional to its size. What is the
constant of proportionality in this case? (i.e. fill in the blank: M ′(t) = M(t).)

(b) How fast is the population growing when there are 6000 mosquitoes?

(It is not necessary to find an equation for M(t) in order to solve this problem - in fact, you
haven’t been given enough information to find M(t)!)

(c) Let t be measured in months, and suppose that M(0) = 3000. Which of the following is a valid
equation for M(t)?

i. 3000e0.02t ii. 3000e100t iii. 3000e
3t
4 iv. 3000e

t
100

Explain your reasoning by choosing the argument that is correct:

Ginny: Since we know that there are 5000 mosquitoes when the growth rate is 100 mosquitoes
per month, the proportionality constant is 100 and this gives the general form M(t) = 3000e100t.

Luna: The proportionality constant in #1 is 0.02 and this gives the general form M(t) =
3000e0.02t.

Fred: We divide by the growth rate 100 mosquitoes per month and so M(t) = 3000e
t

100 .
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21 Constant Acceleration

1. On Earth, acceleration due to gravity is approximately 9.8 m/s2, or 32 ft/s2. One day, Katie leans out
her dorm window (a height of 64 ft above the ground) and hurls an apple straight up in the air with
an initial velocity of 48 ft/s.

(a) Write a function h(t) which gives the height of the apple in feet t seconds after Katie tosses it.

(b) What is the greatest height that the apple reaches?
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2. Angus is selling tickets for the Kroks upcoming a cappella event. From previous months, he knows
that when the price of tickets was $10, 99 tickets were sold and when the price of tickets was $7 then
126 tickets were sold. Suppose Angus wants to model how many tickets the Kroks will sell based on
price of tickets, using a function T (x), where T is number of tickets sold when the price is x dollars.
Assuming T is linear, it is given by the function T (x) = −9x+ 189.

(a) What is T ′(x)? Is it positive or negative? Explain why this makes sense in terms of the model.

(b) Find a formula for A(x), the revenue from ticket sales, if the price of a ticket is x dollars.

(c) Graph your revenue function, labeling all intercepts.

(d) From your graph, determine the price that maximizes revenue.

(e) Find A′(x). What does it mean in terms of the model? Graph it.
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3. (a) Sketch the graph of y = −2(x− 1)2 + 18.

(b) Does the graph have x-intercepts? If so, where?

4. Sketch the following parabolas, and say where the vertex is.

(a) y = 2(x− 1)(x− 5) (b) y = −2x2 + 4x− 7
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5. In each part, is there enough information given to determine the equation of the parabola or quadratic
function? If so, write the equation.

(a) A parabola passing through the points (0, 3), (−1, 6), and (2, 9).

(b) A quadratic function whose derivative is 2x+ 3.

(c) A parabola with x-intercepts at x = 1 and x = 4 and y-intercept at y = −1.

(d) A parabola with vertex at (2,−4) and an x-intercept at x = 5.
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22 Cubics and Higher Degree Polynomials

1. For each description below, sketch a graph of a cubic function f(x) with the characteristic(s) specified
and find a formula for f(x).

(a) f(x) has zeros at x = −π, x = 2, and x = 5. How many possible answers are there?

(b) f(x) has only two zeroes: at x = 2 and x = 5 and a y-intercept of −4. How many possible answers
are there?

(c) f(x) has only one zero, at x = 2, and passes through the point (1,5). How many possible answers
are there?

(d) Graph y = x(x+ 2)(x− 2) = x3 − 4x. Are the tangent lines at x = 1 and x = −1 horizontal?
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2. Let C(x) = 2x3 − 3x2 − 12x.

C(x) has three roots: one at x = 0, one at x ≈ −1.8, and one at x ≈ 3.3.

Find C ′(x), and use it to help graph C(x). How do the graphs relate?

3. Find a cubic polynomial with horizontal tangents at x = 5 and x = 2. How many possible answers are
there? Is x = 5 and x = 2 always a turning point?
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4. For each description below, sketch a graph of a polynomial function P (x) with the characteristic(s)
specified if it is possible! Also, find a formula for P (x).

(a) A degree 5 polynomial with no zeros and lim
x→∞

P (x) = −∞. How many possible answers are

there?

(b) A degree 6 polynomial with no zeros and lim
x→∞

P (x) = −∞. How many possible answers are

there?

5. How many zeros can a degree n polynomial have? How few?

How many turning points can a degree n polynomial have? How few?
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23 Analysis of Local Extrema

1. Intuitively, a local maximum is a point which is at least as high as all points around it. More precisely,
f has a local maximum at c if f(c) ≥ f(x) for all x in the domain near c. How would you define a
local minimum?

Mark the local maxima and local minima on the graphs below.

−2 −1 1 2

−1

1

2

3

−2 −1 1 2

−1

1

2

3

−2 −1 1 2

−2

−1

1

2

3

−2 −1 1 2

−1

1

2

3

2. Often, our goal is to find the absolute minimum or maximum (if it exists) of a function on a given
interval. A good starting point is to first find the local extrema.

(a) How would you create a list of possible local extrema?

(b) How would you go about deciding if a critical point is a local max or a local min?
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3. In this problem, we’ll look at the cubic function f(x) = x3 + 3x2 + 1.

(a) Find all critical numbers of f .

(b) Make a sign chart for f ′, and use this to decide whether each of the critical points you found is a
local minimum, a local maximum, or neither.

What you just did is called the First Derivative Test to decide whether a critical point is a local
minimum, a local maximum, or neither.

4. Let f(x) = x4 − 8x2 + 16.

(a) Find all critical numbers of f .

(b) For each critical number c of f , find the sign of f ′′(c). What does this tell you about the critical
number c?
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5. Let f(x) = x3 and g(x) = x4.

(a) Sketch graphs of f(x) and g(x).

(b) What is f ′(0)? f ′′(0)?

(c) What is g′(0)? g′′(0)?

Second Derivative Test. Suppose f ′(c) = 0. What can you conclude if you have the following additional
information about f ′′(c)?

• f ′′(c) > 0.

• f ′′(c) < 0.

• f ′′(c) = 0.

6. Let f(x) = 3x1/3 + 4x. Find all critical numbers of f , and determine whether each critical number is
a local minimum, local maximum, or neither.
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24 Analysis of Absolute Extrema

1. If possible, create graphs of functions satisfying each description:

(a) A continuous function with an absolute max-
imum of 3 and no absolute minimum.
Domain: [−2,2)

−2 −1 1 2

−1

1

2

3

(b) A function with no absolute maximum and
no absolute minimum .
Domain: [−2,2]

−2 −1 1 2

−1

1

2

3

(c) A continuous function with no absolute max-
imum and no absolute minimum.
Domain: (−2,2)

−2 −1 1 2

−1

1

2

3

(d) A continuous function with no absolute max-
imum and no absolute minimum.
Domain: [−2,2]

−2 −1 1 2

−1

1

2

3

2. When can you be guaranteed that a function f(x) has an absolute max and an absolute minimum?
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3. We now know a continuous function defined on a closed interval will have an absolute maximum and
an absolute minimum. Often, our goal is to find the absolute minimum or maximum (if it exists) of a
function on a given interval. Look at the graphs below and think about a strategy. How would you go
about identifying absolute maximum and absolute minimum on [a,b]?

a b

a b

a b

A B C D E F G H I

y = f(x)

A B C D E F G H I

THIS MONUMENT
MARKS THE HIGHEST

GROUND IN CONNECTICUT

2323 FEET ABOVE THE SEA

BUILT A.D. 1985

OWEN TRAVIS
MASON

THIS MONUMENT
MARKS THE HIGHEST

PEAK IN CONNECTICUT

2323 FEET ABOVE THE SEA

BUILT A.D. 1985

OWEN TRAVIS
MASON

Acutal Inscription A Correct Description
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4. Suppose f(x) is a continuous function defined on a closed interval. Is every critical point an absolute
maximum or an absolute minimum?

5. (a) Does f(r) = 2πr2 + 256π
r have an absolute maximum and absolute minimum on [1, 8]? If so,

where? (Give the r-values at which the absolute minimum and absolute maximum occur.)

(b) Does f have an absolute minimum and absolute maximum on (0,∞)? If so, where?
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6. A soda company wants its aluminum soft drink cans to have a volume of 128π cubic centimeters. The
company’s factory can only manufacture cans that are at least 2 cm tall and have a radius of at least
1 cm. In order to conserve resources, the company wants to minimize the amount of aluminum needed
for a single can. What dimensions should they make their cans?
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25 Optimization

1. For the past couple of days, we’ve been talking about how to find the global (also known as absolute)
maximum and minimum of a given function f(x) on a given domain, or to show that the function has
no global maximum or minimum on the domain. Summarize the methods we learned.

2. A farmer has 40 feet of fencing, and he wants to fence off a rectangular pen next to his barn. The
barn will be one side of the pen, so that side needs no fencing. In order for the cow to be able to turn
around in the pen, the pen needs to be at least 5 feet long and 5 feet wide. What is the largest area
the pen could have?
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3. The soda company in our problem yesterday realizes that they need to use stronger aluminum for the
tops and bottoms of the cans, and this stronger aluminum costs 3 times as much per square inch as the
aluminum used for the sides. If the company wants to minimize the cost of each can, what dimensions
should their cans be? Remember the volume of the can is 128π cubic centimeters.
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4. The following graph(9) shows the heat input in MMBTU (the energy industry’s way of writing millions
of BTUs) and the CO2 output (in tons) for most electricity generation plants in California.

Heat Input (MMBTU)

CO
2 

Em
is

si
on

s 
(t

on
s)

 

0

1,000,000

2,000,000

3,000,000

4,000,000

0 10,000,000 20,000,000 30,000,000 40,000,000 50,000,000

Heat Input vs. CO2 Emissions in CA Electric Plants 

(a) Does the data represent a linear relationship? How do you know?

(b) We can use optimization techniques to find a line that would best fit this data. As a first example
of fitting a model to a given data set, find a linear model f(x) = mx that minimizes the error in
the following data set.

{(1,1),(2,2),(3,2)}

(9)Emissions and Generation Resource Integrated Database
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26 More Optimization

1. You need to make a poster for a poster session. The organizers of the session insist that your poster
has to be 200 square inches and will have 1 inch margins on the sides, a 3 inch margin on the bottom
and a 1 inch margin on the top. What dimensions will give the greatest printed area?
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2. Your architectural firm is designing a building shaped like a box with a square base, tiled on the
sides and top with solar panels. (There are no solar panels on the bottom of the building.) The
building will have a volume of 8 cubic hectometers (hm). Zoning regulations require that the base of
the building have area no less than 1 hm2 and no more than 9 hm2. Furthermore, the solar panels for
the top have been engineered to absorb twice as much solar energy per hm2 as the ones for the side.

Find the dimensions of the building that maximize solar energy absorption.
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3. The number of tweets per hour about getting the vote out can be modeled by the function

f(t) = 100te−.12t

where t is the number of months after March 1st and f(t) gives is the number of thousand tweets per
hour. #getoutthevote

(a) Draw a graph for f(t)

(b) When are the most tweets about getting the vote out happening?
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4. The Phillit Pharmaceutical Company is designing a capsule for a new drug. The capsule is formed by
capping a cylinder with two half-spheres, one at each end. Justify your answer.

The manufacturing division has passed a few constraints along to the design team for the pill’s design.
The cylindrical band around the middle (shown below with height a) should have an area of exactly
60π mm2, the radius should be at least 3 mm, and the height of the cylinder should be at least 5
mm. With these constraints, what are the radius and height that would maximize volume? [Note: the
volume of a sphere of radius r is 4

3πr
3.]
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5. A company is manufacturing smartphones at a cost of $100 per phone. They are trying to decide how
to price their phones to maximize profit. Their market research suggests that, if they price the phones
at $200 per phone, then they will sell 10,000 phones a month. For each $5 increase in price, the number
of phones they will sell decreases by 3%.
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27 Inverse Functions

1. Last weekend, Brianna went for a long leisurely walk around Boston. Here is the graph of f(t), her
distance in miles t hours after the start of her walk.

1 2 3 4 5 6

1

2

3

4

5

(a) How long did it take Brianna to walk 2 miles?

(b) How long did it take Brianna to walk 4 miles?

(c) What does the function f−1, the inverse function of f , represent? Can you sketch it?

(d) How do the domain and range of f−1 relate to the domain and range of f?
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2. Let f(x) = x3.

(a) What is f−1(x)?

(b) Sketch f(x) and f−1(x) on the same set of axes.

(c) What is f(x)−1? Is it the same as f−1(x)?

3. Let g(x) = x2.

(a) What is g−1(x)?

(b) Sketch g(x) and g−1(x) on the same set of axes.



Inverse Functions 101

4. Suppose the following graph shows the temperature at Logan Airport over a particular 24-hour period.
Let f(t) be the temperature at time t. Is f invertible? How can you tell?

0 4 8 12 16 20 24
time

10

20

30

40

50
temp.

5. Decide whether each of the following functions is invertible. If so, what is the domain of the inverse
function?

(a) f(x) = 2x − 1.

(b) g(x) = −2x6 + 7x5 − πx+
√

3.

(c) h(x) = x3 + x.

(d) r(x) =
√
x+ 5
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28 Undoing Exponential Functions

1. When a new technology (like iPods, Facebook, Twitter, etc.) starts to become popular, it often
experiences exponential growth. In 2007, Facebook reported that the number of Facebook members
was growing exponentially by about 3% per week. On October 25 of that year, Facebook reached 50
million members; if the growth trend continued, when did the number of members reach 100 million?
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2. Numbers can also be written as powers of 10. We call this, “Super Scientific Notation”

(a) Explain why 2500 must be power between 10 with an exponent between 3 and 4.

(b) Using trial and error on your calculator, find the exponent � such that 10� = 2500. How accurate
can you be?

3. Express the numbers in the table super-scientific notation. Try to be accurate to at least 2 decimal
places.

Number Number in S-SN Exponent from S-SN

1

10

333

-2500

314156

1000
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4. We can extend this idea and rewrite numbers as powers of other numbers. Using your calculator,
estimate the exponent to which we raise 3 to get 1200.

The logarithm logb(x) is the exponent to which we raise b to get x.

• We require b > 0 and b 6= 1.

• We say logb(x) aloud as “log base b of x.”

5. Evaluate each of the following logarithms by using the relationship between exponents and logarithms.

(a) log3(27) (b) log (10000) (c) log2

(
1
8

)
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(a) log2 32

(b) log5 25

(c) log3

1

9

(d) log
1

100

(e) 7log7 3

(f) log7(1)

(g) log1/2

1

8

(h) 5log5 11

(i) 9log3(4)



Undoing Exponential Functions 106

6. (a) Make a table for the function log7 x.

(b) Graph log7 x.

What is the domain of log7 x? What are its intercepts and asymptotes?
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We call the base e logarithm the “natural logarithm,” and write “ loge x” as lnx.

“lnx” is the power to which e must be raised in order to get x.

So, if ek = b, ln b = k.

7. Sketch the graphs of y = ex and y = lnx on the same axes.

8. Use the fact that
d

dx
ekx = kekx to calculate

d

dx
bx.



Logarithm Rules 108

29 Logarithm Rules

1. Simplify each as much as possible.

(a) log2 8

(b) log5 25

(c) log3

1

9

(d) log
1

10
√

10

(e) ln (eπ)

(f) 7log7 3

(g) 11log5 11

(h) e−3 ln 2

(i) log3

(
34 · 37

)

(j) log2

(
26

211

)

2. Express log(u2w) in terms of A = log u and B = logw.

3. Express logb

(
u3

w2

)
in terms of A = logb u and B = logb w.

4. If possible, simplify each expression, and write it in terms of A = log2 u and B = log2 w.

(a) log2

(
2√
uw

)
. (b) log2

(
u+
√

2w
)
.
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5. Let x = log5R. Express log5(Rp) in terms of x.

6. Let y = log2M and z = log2N . Express log2MN in terms of y and z.

7. Let y = logbM and z = logbN . Express logb
M
N in terms of y and z.

8. log2

(
u+
√

2w
)
.
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Let bx = Q and by = R.

Using exponential rules that we already know, we get the following rules about logarithms:

Rule for Exponentials

bxby =

bx

by
=

(bx)p =

Rule for Logarithms

Be Careful! We don’t have rules for simplifying logb(P +Q) or (logb P )(logbQ).

9. Let log 2 = a and log 3 = b. Express each of the following in term of a and b. There should be no
logarithms explicitly in the expression you give.

(a) 5 log
2

3
(b) 5 log

3
√

6 (c) log
16
4
√

9

10. Simplify the following:

(a) log2(120)− log2(3) (b) log8 x+ log8(x+ 1) (c) log5(73)− log5(7)

11. On the same set of axes, graph lnx, log2 x, and log3 x.

12. Solve the equation 5x = 17 two ways, once by taking log5 of both sides and once by taking ln of both
sides. (The first step of each method is given below.)

5x = 17

log5 (5x) = log5 17

5x = 17

ln (5x) = ln 17
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13. (a) Looking at your answer to #12, guess a formula for logb a in terms of natural logs.

(b) Show that your formula must be true in general. (This formula is known as the change of base
formula.)

(c) Explain how the change of base formula is consistent with your graphs in #11.

14. Rewrite the following in terms of the natural log:

(a) log6 14 (b) log12 3 (c) log4 8

15. Graph f(x) = log5

(
25

x2

)
+ log5 x. (Hint: First use log rules to simplify.) Label all intercepts and

asymptotes, and label at least two other points on the graph with exact coordinates.
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30 Derivatives of Logarithms

1. Let f(x) = lnx.

(a) Sketch the graph of f(x). w www
wwwwwwwwwwwwww

(b) Use your sketch of f(x) to sketch the graph
of f ′(x).

2. How can the derivative of lnx be approximated?

x d
dx lnx (approx)

1
10 9.53
1
2 1.98
1 0.995
2 0.499
3 0.333
4 0.250
5 0.200

Conjecture: The derivative of lnx is

We will take your conjecture as fact and prove this later.

3. What is the derivative of log7 x?
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4. What is the derivative of logb x?
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Summary:

• d

dx
(xn) = (n is a constant)

• d

dx
(ekx) = (k is a constant)

• d

dx
(bx) = (b > 0 and constant)

• d

dx
(logb x) = (b > 0, constant)

• d

dx
(ex) =

• d

dx
(lnx) =

5. Find the derivative of each of the following functions.

(a) y = ln(3x)

(b) f(x) = x lnx.

(c) y = 1
5 log3 (x) +

√
x.

(d) y =
3
√

5x

7
.

To compute derivatives of more complicated functions we need more logarithmic properties:

• logb b
? =

• Write logbR = y in exponential form: • blogb ? =

• logb(QR) =

• logb(Q/R) =

• logb(R
p) =
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6. Does f(x) = x ln
√
x have a global maximum value? A global minimum value? If the function has

either of these, at what value of x is it attained? (Look back at #5(b).)
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31 Solving Equations

In the problems below, solve each equation for x. When you use a log rule to simplify, say which rule you’ve
used.

7. (a) 7x = 12 (b) x7 = 12 (c) log7 x = 12

(d) 7x+ 12 = 3x+ 4 (e) 7x2 + 12x = 0

8. (a) 74x+3 = 12 (b) 5 · 7x+3 = 72x+1
(c) 7x − 49

7x2 = 0

9. (a) 4x+3 = 52x−1 (b) 7 · 4x+2 =
5

32x+1
(c) 2x

2

= 5 · 3x

10. 22x+3 = 8x−7. 11. 3x · 5

3x+1
= 0.
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12. (a) ex(ex − 5) = 6.

(b) 2e2x + 6 = 7ex.

13. Solve for x

(a) 2 log3(x) = log3(4) + log3(x− 1)

(b) log5(x2)− log5(x) + log5(x4) = 10



Applications of Logarithms 118

32 Applications of Logarithms

1. When you take a couple of Tylenol tablets, the active ingredient (acetaminophen) is absorbed into your
system and then gradually dissipates. Though individual responses may vary, typically acetaminophen
has a half-life of around 180 minutes(10).

(a) Sketch a graph of the amount of acetaminophen in your system as a function of time.

(b) Construct a model M(t) that describes the amount of amount of acetaminophen in your system
t minutes after taking two regular strength tablets (600 mg total acetaminophen).

(c) The parameters in this problem vary from patient to patient. Describe how the following changes
would affect your model:

i. You increase the initial dose to 1200 mg. ii. The half-life of a patient is 216 minutes.

(d) From clinical trials it is known that the amount of acetaminophen needed in your system to receive
any therapeutic effect is 200 mg. About how long after you take a two regular strength tablets
does the therapeutic effect wear off?

(10)This problem and the next problem are adapted from a blog called Mathalicious
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(e) Find the inverse function of M(t). What does this function describe?

(f) Right after you take two regular strength Tylenol how much time needs to pass in order for 1 mg
of acetaminophen to dissipate?

(g) Calculate M ′(t). What does this represent?

(h) Calculate the derivative of the inverse of M(t). What does this represent?

(i) Clinical trials have shown that having high levels of acetaminophen in your system for long periods
of time can cause liver damage. What would a patients half-life parameter have to be such that
after taking 1000 mg of acetaminophen 400 mg remains in the system for 6 hours?
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2. If a little bit of Tylenol is therapeutic, a lot must be even more so, right? Well, not quite. While
your pounding head may love a dose of acetaminophen, your liver is less of a fan, and too much
acetaminophen can cause it to shut down. Also, unlike other pain relief drugs, the difference between
a healthy dose of acetaminophen and a dangerous dose can be as small as two extra-strength Tylenol
tablets (1000 mg acetaminophen).

Suppose you’ve got a killer headache, and take two extra-strength Tylenol tablets every 6 hours for an
entire day. Whether or not this is dangerous depends on your individual tolerance, as well as whether
or not you’re taking any other drugs containing acetaminophen.

(a) Draw a graph of D(t), a function that describes the amount of acetaminophen in your system
t minutes after taking two extra-strength Tylenol tablets (1000 mg total) every 6 hours for an
entire day.

(b) Is D(t) invertible? How do you know?

(c) What is the maximum amount of acetaminophen in your system during those 24 hours?

(d) If you continued taking two tablets every 6 hours forever, what would be the maximum amount
of acetaminophen in your system?

(e) When there is 1200 mg of acetaminophen in your system, about how long does it take to dissipate
1 mg of acetaminophen?
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3. Sketch a graph of x ln(x). Label all intercepts and local extrema.

33 The Chain Rule

1. Flavia has an empty flask. The flask is shaped so that, if she were to fill the flask with v mL of water,
then the height of water in the flask would be v2 mm.

(a) Flavia starts pouring water into the flask. At 1 pm, she has poured exactly 10 mL of water into
the flask. Can you tell what the instantaneous rate of change of height of water with respect to
time is at 1 pm, or do you need more information?

(b) Suppose that you are also told that, at 1 pm, Flavia is pouring water into the flask at an instan-
taneous rate of 2 mL/s. Now, can you tell what the instantaneous rate of change of height of
water with respect to time is, or do you need more information?
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2.

3. Fill in the following tables.

Table 1: Derivatives we knew before Table 2: Derivatives we know now

f(x) = xn f ′(x) = h(x) = [g(x)]n h′(x) =

f(x) = ekx f ′(x) = h(x) = eg(x) h′(x) =

f(x) = bx f ′(x) = h(x) = bg(x) h′(x) =

f(x) = lnx f ′(x) = h(x) = ln[g(x)] h′(x) =
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4. Differentiate each of the following functions.

(a) h(x) = ln(7x2 + 3) (b) q(t) = et
3 − 12e2t

(c) j(x) = [ln(7x2 + 3)]5 (d) h(x) = π3(7x+ 3)10

(e) y =

√
x+
√
x

e
.

(f) h(x) = ex
2 · ln(7x2 + 3)

5. How does the graph of ln(x + 5) relate to the graph of lnx? Use the Chain Rule to differentiate
ln(x+ 5). Is your answer consistent with the graph and what you know about the derivative of lnx?
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34 The Chain Rule Continued

1. At time t = 0, Baloo starts blowing up a spherical balloon. His friend Bagheera observes that, at
time t = 3, the balloon has a radius of 5 cm, and the instantaneous rate of change of the balloon’s
radius with respect to time is 2 cm per second (t is measured in seconds). At this time, what is the
instantaneous rate of change of the balloon’s volume with respect to time? (The volume of a sphere
of radius r is 4

3πr
3.) What are the units of your answer?

2. The price of tomatoes varies seasonally; suppose P (t) gives the price of tomatoes in dollars per pound
at time t, where t is measured in months since January 1, 2014. The demand for tomatoes (in other
words, the amount of tomatoes people want to buy) depends on the price; say that D(x) gives the
demand for tomatoes when they cost $x per pound.

What information would you need about P and D in order to find the instantaneous rate of change in
demand for tomatoes with respect to time on March 1, 2014?
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3. You have learned the Power Rule, which said that d
dxx

n = nxn−1 for any real number n. However,
we only proved this when n was either a positive integer or 1

2 . Now that we know the Chain Rule, we
can finally prove the Power Rule for all real numbers n. In this problem, you’ll use the Chain Rule to
prove that the derivative of xπ is πxπ−1. (The same idea works for any exponent, not just π.)

(a) Rewrite f(x) = xπ as f(x) = esomething. What is the “something” in the exponent?

(b) Now, use the Chain Rule and what you know about the derivative of ex to show that f ′(x) =
πxπ−1.
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4. Differentiate the following functions. (Don’t try to simplify your answers.)

(a) h(x) = e3x + x6 · ln(7x2 + 3)

(b) j(u) = ln(lnu)

(c) f(x) = (x2 + 3)π · ln
(

4− e3x2−2
)

5. Here are graphs of two functions, f(x) and g(x). If F (x) = f(g(x)), what is F ′(1)?

f(x) g(x)

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4
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6. You are given the following information about three functions f , g, and h.

h(1) = 2 g(2) = 3 f ′(3) = 6

h′(1) = 4 g′(2) = 5

If r(x) = f(g(h(x))), do you have enough information to find r′(1)? If so, compute it. If not, what
additional information do you need?

7. Here is the graph of a function h(x).

1

1

–1

–1–2–3

–2

–3

–4

2

2

3

3

4 5

(–3, –4)

(3, –3)

(5, 2)

y

h(x)

x

(a) For which values of x is h′(x) negative?

Define a new function f(x) by f(x) = [h(x)]2.

(b) Find all critical numbers of f(x), and classify each as
a local minimum, local maximum, or neither. (Note:
This is asking about f(x), not h(x)!)

(c) Does f achieve an absolute maximum on [−3, 5]? If so, where?

(d) Does f achieve an absolute minimum on [−3, 5]? If so, where?
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35 Logarithmic Differentiation

1. Consider the function f(x) = xx. It’s neither an exponential function (it’s not of the form bx with b a
constant) nor a power function (it’s not of the form xn with n a constant). You showed for homework
that the derivative of f(x) is neither lnx · xx nor x · xx−1. In this problem, we’ll look at 2 ways of
finding f ′(x).

(a) Method 1. Express f(x) = xx as esomething, and then use the Chain Rule to find f ′(x).

(b) Method 1 only makes sense when xx is positive. What part goes wrong when xx ≤ 0? Should we
worry about this?

(c) Method 2 (Logarithmic differentation).

Fill in the steps below. We start with the given equation

f(x) = xx.

Take the natural log of both sides, and simplify the right side:

Differentiate both sides with respect to x:

Solve for f ′(x):

(d) Do the two methods give you the same answer? Which do you like better?
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Exponentiation Laws. Fill in as many blanks as
you can!

E1. bx + by =

E2. bx+y =

E3. bx − by =

E4. bx−y =

E5. bxy =

Logarithm Laws. Fill in as many blanks as you
can!

L1. logb(Q+R) =

L2. logb(Q−R) =

L3. logb(QR) =

L4. (logbQ)(logbR) =

L5. logb

(
Q
R

)
=

L6. logb(Q
y) =

2. Find the derivative of each of the following functions.(11) Don’t bother to simplify your answers.

(a) g(x) = (4x2 + 5)e
x−1.

(b) Find
dy

dx
if y =

xex

(x2 + 2)4(5x+ 2)2
, defined for x > 0.

(11)Technically, you should only use logarithmic differentiation on positive functions, since you can only take the log of a
positive quantity. We won’t worry about this technicality.
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(c) f(t) = 3t + t3 + t3t. (d) f(x) = (lnx)x −
√
x2 + 1

3. Suppose Q(x) =
f(x)

g(x)
, where f(x) and g(x) are positive for all x.

(a) Use logarithmic differentiation to find Q′(x).

(b) As you can see, if you forget the Quotient Rule, you can always use logarithmic differentiation to
figure it out again. What’s another way to figure out the Quotient Rule if you’ve forgotten it?

4. Suppose you have four positive functions f(x), g(x), h(x), j(x), and you want to find the derivative of
the product f(x)g(x)h(x)j(x). You could do this using the Product Rule, but it’s much easier with
logarithmic differentiation. Find the derivative of f(x)g(x)h(x)j(x).
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36 Implicit Differentiation

1. (a) If g(x) = [f(x)]3, express g′(x) in terms of f(x) and f ′(x).

(b) If y is an unknown function of x, express d
dx (y3) in terms of y and dy

dx .

2. Let’s look at a circle of radius 5 centered at the origin. Find the slope of the line tangent to this circle
at the point (4,−3).

Here are some other implicit curves:

-1 - ���

1
2 ���

1
2 1

-1

- ���

1
2

���

1
2

1

- ���

1
2 ���

1
2 1

- ���

1
2

���

1
2

1

-2 -1 1 2

-2

-1

1

2

Heart curve Crooked egg curve Trifolium
(x2 + y2 − 1)3 − x2y3 = 0 (x2 + y2)2 = x3 + y3 (x2 + y2)2 = 2(x3 − 3xy2)
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3. Find the equation for the tangent line to x3 + y3 =
9

2
xy, the folium of Descartes, at the point (1, 2).

−2 −1 1 2

−2

−1

1

2

4. Let’s think again about the circle in #2. Imagine that a bug is crawling along this circle. At a certain
instant, the bug is at the point (4,−3), and its y-coordinate is decreasing at an instantaneous rate of
2 units per second.

(a) At this instant, is the bug going clockwise or counterclockwise?

(b) At this instant, how fast is the bug’s x-coordinate decreasing?
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5. At what point(s) does the tangent line to y2 = x3 + 3x2 have slope 0?

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

6. Find the line tangent to the heart curve (x2 + y2 − 1)3 − x2y3 = 0 at (−1, 1).
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37 Related Rates

1. Thabo is working on the following problem:

It is evening and a 5-foot-tall woman is standing by a 15-foot-high street lamp on a cobbled
road, waiting for her ride home from work. When she sees her wife pull her car up to the
curb she begins to walk away from the light at a rate of 4 feet per second. How fast is the
length of her shadow changing?

(a) First, before diving straight in, Thabo wants to make a reasonable estimation of what his result
will be. Will the woman’s shadow be increasing or decreasing in length for the above scenario?
(You can try to run an experiment just like it with a light source to check your answer!)

(b) Thabo has drawn the following picture and labeled some variables but is unsure what to do next.

x ft shadow length = ` ft

lamp
(15 ft)

woman
(5 ft)

i. Thabo knows it’s always a good idea to start by figuring out your goal and what you know,
so he’s trying to do that. Which of the following best describes the problem Thabo is trying
to solve in terms of time t and the variables x, ` in the picture?

A. Goal: Find
d`

dx
. What we know: x = 4.

B. Goal: Find
d`

dt
. What we know: x = 4.

C. Goal: Find
dx

dt
. What we know:

d`

dt
= 4.

D. Goal: Find
d`

dt
. What we know:

dx

dt
= 4.

(c) Write down an equation relating x and `. (Hint: Use similar triangles!)

(d) Solve Thabo’s problem.
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2. Your calculus book is sitting on your desk, leaning against the wall as shown. The
book is slowly sliding down the wall, with the top of the book sliding down at a rate
of 1 inch per second. We’d like to find the (instantaneous) rate at which the bottom
of the book is sliding at the moment shown.

(a) Thought question. Do you think the rate we’re looking for is greater than, equal
to, or less than 1 inch per second?

Now, we’ll find the rate exactly.

2

10

(b) The picture drawn above is a “snapshot” showing the book at a particular moment in time.
Draw a “generic” picture which could apply at any time. On this picture, give variable names to
quantities that are changing over time, and label any values that are constant.

(c) What’s the goal in this problem? (What rate are you looking for?)

(d) What rates are given in the problem?

(e) What relationships can you come up with among your variables? Write an equation that relates
your variables.

(f) Use implicit differentiation on your equation from (e) to solve for the rate you’re looking for.

(g) If the top of the book continues to slide at a constant rate of 1 inch per second, does the bottom
of the book slide at a constant rate? If not, how does this rate change? Explain your answer
using a formula.
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3. Two cars are approaching an intersection. A red car, approaching from the north, is traveling 20 feet
per second and is currently 60 feet from the intersection. A blue car, approaching from the west, is
traveling 30 feet per second and is currently 80 feet from the intersection. At this moment, is the
distance between the two cars increasing or decreasing? How quickly?

4. An oil tank in the shape of an inverted cone has height 10 m and radius 6 m. When the oil is 5 m
deep, the tank is leaking oil from the tip at a rate of 2 m3 per day. How quickly is the height of the
oil in the tank decreasing at this moment?

Note: The volume of a cone of radius r and height h is 1
3πr

2h.
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5. At noon, you are dashing through Harvard Yard to get to class and notice a friend 100 feet west of
you, also running to class. If you are running south at a constant rate of 450 ft/min (approximately 5
mph) and your friend is running north at a constant rate of 350 ft/min (approximately 4 mph), how
fast is the distance between you and your friend changing at 12:02 pm?
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38 Unit Circle Trigaonometry

1. Sketch a graph showing the total hours of daylight each day for...

(a) One week starting Dec. 22, 2016.

(b) Three months starting Dec. 22, 2016.

(c) Twelve months starting Dec. 22, 2016.

(d) Five years starting Dec. 22, 2016.
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Definition of sine and cosine. If w is a real number, we’ll define sinw (“sine of w”) and cosw
(“cosine of w”) using the following procedure. Start at the point (1, 0) on a circle of radius 1 centered
at the origin (we call this the unit circle).

If w ≥ 0, travel along the circle in a counterclockwise direction a distance w units; if w < 0, travel
along the circle in a clockwise direction a distance |w| units. Call the point you’ve arrived at P (w).

−1 1

−1

1P (w)
distance w

x

y

We’ll define cos(w) to be the x-coordinate of P (w) and sin(w) to be the y-coordinate of P (w). That
is, P (w) has coordinates (cos(w), sin(w)).

2. When you travel halfway around the unit circle, you’ve gone a little more than 3.1 units. Is this
surprising? Why or why not? What does this have to do with the formula for the circumference of a
circle?

3. Use the calibrated unit circle to approximate the following quantities. When you’re able to find an
exact answer, use an “=” sign; when you are approximating, use “≈”.

(a) sin 1

(b) cos 1

(c) sin(2)

(d) sin(−2)

(e) cos(3)

(f) cos(−3)

(g) sin(.5)

(h) sin(.5 + 2π)

(i) sin(.5 + π)

(j) sin(π − 0.5)

(k) cos(−π)

(l) sin 3π
2

(m) cos
(
− 11π

2

)

(n) sinπ

(o) sin 8
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4. Use the unit circle to answer the following questions.

(a) If t is a positive number, what is the relationship between sin t and sin(−t)? What does this tell
you about the graph of the function sin t?

(b) If t is a positive number, what is the relationship between cos t and cos(−t)? What does this tell
you about the graph of the function cos t?

(c) If t is a positive number, what is the relationship between sin t and sin(t + 2π)? Does the same
hold for cosine? What does this tell you about the graphs of sin t and cos t?

(d) If t is a positive number, what is the relationship between sin t and sin(t+ π)?

5. Using the unit circle, sketch the graphs of sin t and cos t. Make sure your graphs match the properties
you’ve observed so far.

Graph of sin t Graph of cos t

Where are the roots of sin t? That is, for what values of t is sin t = 0? Where are the roots of cos t?



Unit Circle Trigaonometry 141

6. Suppose A is a number in
[
0,
π

2

]
such that sinA =

1

4
.

(a) Find all numbers t in [0, 2π] such that sin t =
1

4
. (Express your answers in terms of A.)

Can you describe all numbers t such that sin t =
1

4
?

(b) Find all numbers t in [0, 2π] such that sin t = −1

4
. (Express your answers in terms of A.)

7. If q is a number such that sin q = 3
5 , what can you say about cos q? Be as detailed and precise as

possible.

8. Looking at the unit circle and your graphs, how are sin t and cos t related? Brainstorm as many
different relationships between these two functions as you can.
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Here is a calibrated unit circle. The values marked off on the circle represent the arc length from the point
(1, 0), measured counter-clockwise. The grid squares are 0.1 units on each side.
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39 Periodic and Sinusoidal Functions

1. Informally, a periodic graph is a graph that repeats itself. Which of the following phenomena would
you model using a periodic function? Which of these is not periodic?

(a) A normal EKG:

(b) Torsades de pointes is a rare arrythmia of the heart which can lead to sudden death if untreated.

Actual EKG Model of Torsades de pointes

(c) At the Mauna Loa observatory in Hawaii, the amount of carbon dioxide in the atmosphere has
been measured every month since 1958. Here is a graph of the data.
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(d) In Fall River, MA, the water level is measured every 6 minutes. Here is a graph of the data from
January 1, 2012 to January 6, 2012.
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2. Suppose a function f is periodic with period k. How can we mathematically express the fact that the
function “repeats every k units?”

3. The term sinusoidal function or simply sinusoid is used to refer to the sine and cosine functions, as
well as modifications of them obtained by shifting, flipping, stretching, and shrinking. Which of the
phenomena in #1 could reasonably be modeled by a sinusoid?
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Terminology for sinusoids. Period, amplitude, and balance value:

amplitude

balance line

period

4. Sinusoids. Graph the following, and label the y-intercept and coordinates of a local minimum and
local maximum. What are the period, amplitude, and balance value of each?

(a) y = sin

(
1

2
x

)

(b) y = 4 cos(−3x)− 5

(c) y = −2 sin
(
x− π

4

)

Summary. For a sinusoid of the form y = A sin(Bx) + C or y = A cos(Bx) + C:

Period: Amplitude: Balance value:



Periodic and Sinusoidal Functions 145

5. A retun to last class: Model daylight for 1 year. What information would you want to know? What
does the function look like?

6. The most popular paid tourist attraction in the U.K. is the London Eye, a giant Ferris wheel located
on the bank of the River Thames in London. The entire structure is 135 meters tall, and the wheel
has a diameter of 120 meters. The Ferris wheel makes one revolution every 30 minutes. Suppose that,
at time t = 0, the ride starts and you are in a car at the bottom of the wheel.

(a) Let h(t) be your height (in meters) above the ground at time t. Graph h(t) from time t = 0 to
time t = 90 minutes. (Note: At the highest point, you are 135 meters above the ground.)

(b) Write an equation for h(t).
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7. For each of the sinusoids below, determine the balance value, amplitude, and period. Then, write an
equation for the sinusoid.

(a) (
π
4
, 2
)

(
−π

4
,−4

) (
3π
4
,−4

)

(b)

(−6,−1)

(6, 5)

(c)

−1

(
π
3
, 3
)(

− 5π
3
, 3
)



Periodic and Sinusoidal Functions 147

8. Write a function that models the number of hours of sunlight in Boston t years after December 22nd

2018.



Tangent Arc Length and Angles 148

40 Tangent Arc Length and Angles

1. (a) Using the unit circle definition of the tangent function, sketch the graph of tanx.

(b) Express tanx in terms of sinx and cosx.

(c) What are the vertical asymptotes of tanx? Does this agree with your knowledge of sinx and
cosx? Explain.

(d) What are the zeros of tanx? Does this agree with your knowledge of sinx and cosx? Explain.

(e) What is the period of tanx?

(f) Evaluate the following limits.

i. lim
x→(π/2)−

tanx ii. lim
x→(π/2)+

tanx iii. lim
x→∞

tanx

2. For each of the following angles, sketch the angle in standard position. Then, convert the angle from
radians to degrees, or vice versa.

2π

3
= ◦ 30◦ =

5π

2
= ◦ −45◦ =

−1 1

−1

1

−1 1

−1

1

−1 1

−1

1

−1 1

−1

1

π radians = 180◦. 1 radian = degrees. 1◦ = radians.
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3. The picture shows a “circular sector,” which you can think of as a wedge of a circle. What is the length
of the bold piece? (The technical way to describe this bold piece is “an arc on a circle of radius 20

that subtends an angle of
π

6
.”)

20
π

6

4. If θ is the angle shown in the picture, evaluate each of the following. (It will help to draw the angle in
question on the unit circle.)

−1 1

−1

1

θ

(
5

13
,
12

13

)

(a) sin θ (b) cos(π − θ) (c) sin(2π − θ)

(d) cos(2π + θ) (e) tan (π − θ) (f) sin (π + θ)

(g) How many angles A are there in [π, 2π] such that cosA =
5

13
? Express them in terms of θ.
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5. A crop receives water by a pivot irrigation system with arm length 200m.

If the pipe rotates only 5
4π radians, what is the area of the field wich is irrigated?

6. A nautical mile is the distance along the surface of the earth that subtends an angle of
1

60

◦
.

(a) Draw a picture to illustrate a nautical mile. What is
1

60

◦
in radians?

(b) The radius of the earth is about 3960 miles. Use this to approximate a nautical mile, giving your
answer in feet. (One mile = 5280 feet.)
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7. Make a rough sketch of f(x) = e0.05x sinx. What are lim
x→−∞

e0.05x sinx and lim
x→∞

e0.05x sinx?
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41 Right Triangle Trigonometry

Trigonometry means “measuring triangles,” something people have been doing for centuries in astronomy,
navigation, surveying, optics and other areas.

To see the connection between a right triangle and the unit circle, we imagine drawing the triangle together
with the unit circle like this:

θ
−1

−1

1

θ

Let w be the arc length from (1,0) to the intersection of the circle and the hypotenuse. Use properties of
arc length and angles to relate θ to w.

In terms of right triangles: sin θ = cos θ = tan θ =

We also define:

“cosecant of θ” : csc θ =
1

sin θ
“secant of θ” : sec θ =

1

cos θ
“cotangent of θ” : cot θ =

cos θ

sin θ

1. Here are two special right triangles, each shown with base length 1:

a right isosceles triangle half of an equilateral triangle

1 1

(a) Find and label the lengths of all other sides of the triangles, as well as the size of the angles in
each triangle.

(b) From your completed pictures, you can determine sine, cosine, and tangent of the acute angles in
each triangle.
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2. Combining the right triangle and unit circle perspectives.

Suppose we’d like to find cos

(
2π

3

)
. We can’t draw a right triangle with an angle of

2π

3
(why not?),

so we’ll combine our knowledge of the unit circle and right triangles.

(a) Sketch the unit circle and the angle 2π
3 in standard position. (The most important thing to get

right in your sketch is the quadrant that the terminal side of the angle is in.)

(b) On your sketch from (a), draw a perpendicular from the point P

(
2π

3

)
to the x-axis. You should

now see a triangle in your picture. We call this the reference triangle for the angle 2π
3 .

(c) What is the angle in the reference triangle between the hypotenuse and the x-axis? This is called
the reference angle for 2π

3 .

(d) Using your reference triangle, you should now be able to see what cos

(
2π

3

)
is. What is it? How

about sin

(
2π

3

)
?
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3. You’re interested in knowing the height of a tall tree. You position yourself so that your line of sight
to the top of the tree makes a 60◦ angle with the horizontal. You measure the distance from where
you stand to the base of the tree to be 45 feet. How tall is the tree, if your eyes are five feet above the
ground?

4. You are standing on an overpass, 35 feet above the street, waving to a friend who is at the window
of a high-rise dormitory across the overpass. The angle of depression to the bottom of the dormitory
(on street level) is 15◦. The angle of elevation to your friend’s window is 45◦. What is your friend’s
elevation?
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5. Use the same idea as in #2 to find exact values for the following:

(a) sin

(
4π

3

)
(b) tan

(
−19π

6

)

6. Give exact values for the following.

(a) cot

(
−3π

2

)
(b) sec

(
13π

6

)

7. (a) For what values of x is tanx =
1√
3

? Find all, and illustrate your solution using the graph of

tanx.

(b) For what values of x is tanx = − 1√
3

? Find all.

8. It’s often useful to think about the two special right triangles as having hypotenuse 1 rather than base
length 1. Find and label the lengths of the legs of these two triangles:

1

π
4

π
4

1

π
3

π
6
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42 Derivatives of Trigonometric Functions

1. Sketch the graph of sinx. Based on this, sketch the graph of the derivative of sinx. From your graph,
do you have a guess as to what the derivative of sinx might be?

Q: How tall is the derivative function?

2. (a) What is the definition of the derivative of sinx?

(b) What is the definition of the derivative of sinx at x = 0?

3. The limit lim
A→0

sinA

A
is an interesting one. What do you think lim

A→0

sinA

A
is?

This limit is not so simple, so we’ll have to use some ingenuity to find it.

(a) The following three pictures show a positive acute angle A together with the unit circle. In each
picture, find the shaded area in terms of A.

−1 1

−1

1

A
−1 1

−1

1

A
−1 1

−1

1

A
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(b) Put the three areas in increasing order:

≤ ≤

Now, multiply by 2 and divide by sinA (which is positive because A > 0).

≤ ≤

What happens as A→ 0+?

(c) What does that tell you about lim
A→0

sinA

A
?

(d) In this argument, it was important that A was measured in radians. Which step would be wrong
if we measured A in degrees?

There’s another fact we need to find the derivative of sinx:

Fact. sin(A + B) = sinA cosB + sinB cosA. (You don’t need to remember this formula, but you
should definitely remember that sin(A+B) 6= sinA+ sinB!)
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We’ve already seen in that the derivative of sin(x) is cos(x)#2(a) that What is the definition of the
derivative of cosx?

What is the definition of the derivative of cosx at x = 0?

Can you evaluate the derivative just by thinking about the graph of cosx?
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4. What is the derivative of cosx?

5. Find the derivative of tanx. Do simplify your answer.

Derivatives of the six basic trigonometric functions. (You should memorize these.)

d

dx
(sinx) =

d

dx
(cscx) = − cscx cotx

d

dx
(cosx) =

d

dx
(secx) = secx tanx

d

dx
(tanx) =

d

dx
(cotx) = − csc2 x

(You’ll show the last three on your homework.)
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43 Inverse Trigonometric Functions

1. Warm Up. Think of two different values of θ such that sin θ = 1
2 .

2. A New York lawyer is working on the case of an elderly woman who twisted her ankle while chasing a
runaway shopping cart down a ramp outside a Manhattan grocery store. The curb is 6.5 inches high
and the flat ground from the edge of the curb to the end of the ramp measures 50 inches. New York
City law specifies that ramps must have a sloping angle of no more than 5 degrees. He needs to know
whether the construction of this ramp was in accordance with the law. What equation must we solve
in order to find the sloping angle of the ramp?

3. Defining arcsin.

(a) On the axes below, sketch y = sinx, and state the domain and range of the function sinx.

− 3π
2

−π −π
2

π
2

π 3π
2

− 3π
2

−π

−π
2

π
2

π

3π
2

Domain of sinx:

Range of sinx:

(b) We would like to define arcsinx to be the inverse function of sinx. Why can’t we do that?

(c) Can we restrict sinx to an interval on which it is invertible?



Inverse Trigonometric Functions 161

(d) If we restrict sinx to the interval
[
−π

2
,
π

2

]
, then it is invertible; we’ll define arcsinx to be the

inverse of this restricted function. On the axes below, sketch y = arcsinx. What are the domain
and range of the function arcsinx?

− 3π
2

−π −π
2

π
2

π 3π
2

− 3π
2

−π

−π
2

π
2

π

3π
2

Domain of arcsinx:

Range of arcsinx:

(e) If P = arcsinQ, how could you express Q in terms of P?

In words, arcsinQ is .

(f) What is arcsin

(
1

2

)
?

B The function arcsinx is also written as sin−1 x. It’s important to remember that sin−1 x refers
to arcsinx, not to (sinx)−1; (sinx)−1 is the same as 1

sin x , which is the same as cscx. (Yes, this

notation is inconsistent: sin2 x is the same thing as (sinx)2. This is one of those quirks that
you just have to remember!)

(g) True or false: since sin
(
11π
6

)
= − 1

2 , sin−1
(
− 1

2

)
= 11π

6 .
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4. Similarly, we’ll define:

• arccosx =

• arctanx =

Graph arctanx. What are its domain and range?

− 3π
2

−π −π
2

π
2

π 3π
2

− 3π
2

−π

−π
2

π
2

π

3π
2

Domain of arctanx:

Range of arctanx:

Although we call arcsinx, arccosx, and arctanx inverse trigonometric functions, remember that they are
not really the inverse functions of sinx, cosx, and tanx (because sinx, cosx, and tanx are not invertible!).
They are only the inverse functions of sinx, cosx, and tanx when each function’s domain is restricted in
a certain way.

5. Is each of the following quantities defined or undefined? If it is defined, what is its value?

(a) arcsin

(
sin

3π

2

)
(b) sin

(
arcsin

3π

2

)
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6. Using inverse trig functions to solve equations.

(a) Find all values of x in [0, 2π] such that sinx = 1
2 ; give exact answers.

(b) Find all values of x in [0, 2π] such that sinx = 1
3 ; give exact answers (which will involve inverse

trigonometric functions).

(c) Solve cosx = −0.7 on [0, 2π].

(d) Find all values of x such that cosx = −0.7.
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44 Solving Trigonometric Equations

1. Over the next week, the tides at Pleasant Bay on Cape Cod will be roughly periodic, with a period of
12.5 hours and a 3.8-foot difference between high and low tides. At 6 am this morning, the water was
at “mean sea level” (half-way between high and low tide), and the water level was falling.

(a) Which of the following best models the height of the water, relative to sea level, t hours after 6
am?

A. 1.9 sin

(
2π

12.5
t

)
B. −1.9 sin

(
2π

12.5
t

)
C. 1.9 cos

(
2π

12.5
t

)
D. −1.9 cos

(
2π

12.5
t

)

(b) There is a causeway at Pleasant Bay that becomes impassable when the water is 1.7 feet above
sea level. If we want to know the first time after 6 am that the causeway will become impassable,
what equation do we need to solve?

2. Solving sinx = a, cosx = a, and tanx = a. Solve each of the following equations.

(a) Solve cosx = − 1
2 on [−π, 3π].

(b) Solve cosu = 0.4 on [0, 3π].

(c) Find all solutions of tanu = −3.

(d) Solve sin t = −0.3 on [0, 4π].
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3. Substituting for the inside of a trigonometric function. Solve the following equations on the interval
specified. (Your answers to #2 may be helpful.)

(a) cos
(x

3

)
= −1

2
on [−3π, 9π].

(b) 5 cos
(x

2

)
= 2 on (−∞,∞)

(c) 2 sin(3t) =
√

3 for t in [−π, π]

4. Substituting for an entire trigonometric expression.

2 cos2 x+ 3 cosx+ 1 = 0 on [−π, π]

5. Solve.

(a) sin(x2) = − 1√
2

on [−2, 2]

(b) sin θ tan θ = − sin θ on
(
−π

2
,
π

2

)

(c) 34 sin2 x = 9 for x in [0, 2π]

6. Solve the equation you found in #1(b) to find the first time after 6 am that the causeway at Pleasant
Bay becomes impassable.
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45 Problem Solving with Trigonometry

1. (a) Sketch the unit circle together with the angle sin−1
(
− 3

5

)
in standard position. Draw in the

reference triangle for this angle.

(b) What is cos
(
sin−1

(
− 3

5

))
?

2. Simplify each of the following to an expression that does not involve trigonometric functions or inverse
trigonometric functions.

(a) sin

(
cos−1

(
−2

3

))

(b) sin (arctan(−2))

(c) tan (arctan 10)

(d) arctan (tan 3π)
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3. In this problem, you’ll graph f(x) = cos(arccosx) and g(x) = arccos(cosx).

(a) What is the domain of f? How about g?

(b) For what values of x is it true that f(x) = x? How about g?

(c) Is f periodic? If so, how often does it repeat? How about g?

(d) If x is in [π, 2π], what is arccos(cosx)?

(e) Graph f and g. Make sure the domain and range of each graph is clear.
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4. For each of the following functions, find the picture below which shows its graph.

(a) arcsin (sinx) (b) cos
(
x2
)

(c) ln(cosx) (d) x cosx

A

-1

1

B

− 3π
2

−π
2

π
2

3π
2

−π
2

π
2

C D E

1

F -1

1

G

1

H
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46 Derivatives of Inverse Trig Functions

1. (a) Sketch y = arctanx, and label any horizontal and vertical asymptotes on your graph. Then,
sketch a rough graph of the derivative of arctanx.

Now, we’ll find the derivative of y = arctanx.

(b) Rewrite the equation y = arctanx as an equation involving tan rather than arctan.

(c) Use implicit differentiation on the equation you just wrote down to find
dy

dx
. (Does it match the

graph you sketched?)

(d) Use simplification methods from Inverse Trig. to rewrite the denominator.
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2. Sketch arcsinx and d
dx (arcsinx), and then use the idea of #1 to find d

dx (arcsinx).

Derivatives of the inverse trigonometric functions. (You should memorize these.)

d

dx
(arcsinx) =

d

dx
(arccosx) = − 1√

1− x2
d

dx
(arctanx) =

(You’ll do arccosx on your homework.)
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3. Differentiate the following functions. (You should not need implicit differentiation here; rather, use
what you already know about the derivatives of arcsinx, arccosx, and arctanx.)

(a) f(x) = arcsin

(
1

x

)

(b) g(x) = e3x arccos(2x)

(c) h(x) =

√
arctan(4x)

e5

4. In #3 on the worksheet “Problem Solving with Trigonometry”, you found that the graph of arccos(cosx)
looks like this:

−4π −3π −2π −π π 2π 3π 4π

π

What is the derivative of arccos(cosx)? Sketch a graph of this derivative.
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5. Let f(x) = x− arctan(2x).

(a) Find all local maxima and local minima of f (give both coordinates), and determine the intervals
on which f is increasing and decreasing.

(b) Find all inflection points of f , and determine the intervals on which f is concave up and concave
down.

(c) What is lim
x→∞

f(x)? lim
x→−∞

f(x)?

(d) What is lim
x→∞

f ′(x)? lim
x→−∞

f ′(x)?

(e) Is f(x) an even function, an odd function, or neither?

(f) Sketch the graph of f(x).

(g) Based on your work in this problem, can you determine with certainty how many roots f has?



Problem Solving with Inverse Trig Functions 173

47 Problem Solving with Inverse Trig Functions

1. Find the area of the largest rectangle that can be inscribed in a semicircle of radius 2.

θ
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2. (a) A rocket is propelled straight upward from a launching pad. An observation site is located at the
same height as the launching pad, but 600 feet away from it. At the observation site, a tracking
instrument is tracking the take-off of the rocket. The stationary tracking instrument is rotating to
keep the rocket in the center of its line of sight. If the angle of elevation of the tracking instrument
is increasing at the rate of 0.5 radians per second when the angle of elevation is π

4 , what is the
vertical speed of the rocket at that instant?

(b) If the rocket continues climbing at the same vertical speed, does the instrument need to speed up,
slow down, or continue rotating at the same speed to keep tracking the rocket?
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3. (From Cody Patterson) Cody has a laser pointer mounted on a stand that can be rotated horizontally.
The stand is located 4 meters from a wall. Cody begins with the laser pointer perpindicular to the
wall, and he then starts to rotate the laser pointer clockwise at a constant rate of 1/6 radians per
second.

(a) When the laser dot on the wall is exactly 5 meters away from the laser pointer, how quickly is
the light on the wall moving?

(b) At what point along the wall is the laser dot moving most slowly? (You may assume that the
wall is infinitely long.)
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48 Indeterminate Forms

1. Evaluate the following limits, using the techniques you learned in Math Ma.

(a) lim
x→∞

x3 + 1

x2 + 3x
(b) lim

h→0

f(x+ h)− f(x)

h

2. The limits in #1 were “of the form 0
0 ,” or “of the form ∞

∞ .” 0
0 and ∞∞ are examples of what we call

“indeterminate forms.”

(a) What do we mean when we say “ 0
0” or “∞∞” is an indeterminate form?

(b) Come up with a couple of examples of the type “ 0
0” or “∞∞” that show that these are indeterminate

forms.

3. Consider the limit lim
x→1

sin(πx)
π
4 − arctanx

. Can you evaluate it?

(a) If you were to graph sin(πx) and π
4 − arctanx and zoom in around x = 1, what would the graphs

resemble? Can you approximate the graphs by something simpler near x = 1?

(b) Using your approximations, what do you think lim
x→1

sin(πx)
π
4 − arctanx

is?
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l’Hôpital’s Rule. If lim
x→a

f(x)

g(x)
is a “ 0

0” or “∞∞” type of limit, then lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
, if the

latter limit exists or is ±∞. (This rule also works for one-sided limits.)

+ Remember that L’Hôpital’s Rule only applies to limits of the form 0
0 and ∞∞ !

(c) Use l’Hôpital’s Rule to evaluate lim
x→1

sin(πx)
π
4 − arctanx

.

4. Evaluate the following limits. Warning: l’Hôpital’s Rule does not apply to all of them!

(a) lim
x→π

sinx

(x− π)(x+ 3)

(b) lim
x→−3

sinx

(x− π)(x+ 3)
.

What can you say about the graph of f(x) =
sinx

(x− π)(x+ 3)
around x = π and x = −3?

(c) lim
x→0

ex − 1− x
x2
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(d) lim
x→∞

lnx
3
√
x

(e) lim
x→3−

ln(9− x2)

arcsin(x− 3)

(f) lim
x→∞

sinx

x

5. Evaluate lim
x→0+

√
x lnx. What form is this limit?

The strategy for dealing with a limit of this form is to rewrite the product f(x)g(x) as a quotient;

f(x)g(x) = f(x)
1/g(x) or f(x)g(x) = g(x)

1/f(x) . (Both equations are true; often, one will be easier to work

with than the other.)
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49 Relative Growth Rates

l’Hôpital’s Rule. If lim
x→a

f(x)

g(x)
is a or type of limit, then lim

x→a

f(x)

g(x)
= , if

the latter limit exists or is ±∞.

1. (a) Sketch the graphs of lnx and 3
√
x. Which do you think is larger when x is very large?

(b) How could we use limits to confirm which is larger when x is very large?

(c) Generalize: If p is any positive number, does lnx or xp grow more quickly?
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Suppose f(x) and g(x) are functions that are both positive when x is large. We say that g(x) grows much

more quickly than f(x), written g(x)� f(x), if lim
x→∞

f(x)

g(x)
= (or, equivalently, if lim

x→∞

g(x)

f(x)
= ).

2. (a) Does 1.001x or x2 grow more quickly? Use the limit definition of � to support your answer.

(b) Does 1.0001x or 3x3 + 7x + 5 grow more quickly? Use the limit definition of � to support your
answer.

(c) Generalize: If P (x) is a polynomial with a positive leading coefficient(12) and b > 0, does bx or
P (x) grow more quickly? (Does it depend on the particular polynomial, or on the value of b?)

3. All of the following functions increase without bound as x → ∞. Put them in order from slowest
growing to fastest.

1.01x 32x 23x 7
√
x x1,000,000 log7 x x lnx

(12)The leading coefficient of a polynomial is the coefficient of the highest degree term. For instance, the leading coefficient of
−2x4 + x3 + 7x2 is −2.
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4. Using relative growth rates to reason about limits at infinity.

(a) Evaluate lim
x→∞

2x3 +
√
x

5x3 + 4x2 + 4
.

(b) Apply the same idea to evaluate lim
x→∞

lnx+ πx0.1 + e−x

10
√

7x+ 1
x

.

5. Evaluate the following limits.

(a) lim
x→∞

x2 lnx

3x2 + 17
(b) lim

x→−∞

ex + x2

7x3 + 5
(c) lim

x→∞

x2 + 1.01x + 7 sinx

lnx+
√
x+ 1.02x

6. Evaluate lim
x→0+

√
xe1/x. What form is this limit?

0 · ∞ limits. The strategy for dealing with a limit lim
x→a

f(x)g(x) of the indeterminate form 0 · ∞ is to

rewrite the product f(x)g(x) as a quotient; f(x)g(x) = f(x)
1/g(x) or f(x)g(x) = g(x)

1/f(x) . (Both equations are

true; often, one will be easier to work with than the other.)
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50 More Indeterminate Forms

1. Evaluate lim
x→∞

x ln

(
1 +

0.06

x

)
. What form is this limit?

2. Consider lim
h→0+

(1 + h)1/h.

(a) What was your guess for the value of this limit?

(b) The strategy for dealing with a limit of this form is to rewrite it. Rewrite (1 +h)1/h as esomething.
(What is the “something” in the exponent? Simplify it.)

(c) As h→ 0+, what happens to the “something” in the exponent of (b)? (Does it approach a limit?)

(d) What can you conclude about lim
h→0+

(1 + h)1/h?
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3. (a) Steve decides to open a bank account with an opening deposit of $1000. Suppose that the account
earns a nominal annual interest rate of 6%, compounded annually. Assuming Steve completely
ignores the account after he opens it (so he doesn’t make any deposits or withdrawals), how much
money does the account have after 1 year? How about after t years?

(b) Suppose that Steve had instead deposited his money in a bank that offered monthly compounding
(but everything else was the same). How much money would the account have after 1 year? How
about after t years?

What is the percent growth in the account’s value over one year? (This is called the annual
percentage yield, or APY.)

(c) Continuous compounding is defined to be the limit as n → ∞ of having n compounding periods
a year. If Steve had used a bank with continuous compounding, how much money would he have
after 1 year? How about after t years?
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4. Evaluate the following limits. It is up to you to decide on an appropriate method.

(a) lim
x→(π/2)−

tanx

secx

(b) lim
x→0−

(1− 2x)1/ cos x

(c) lim
x→0−

(1− 2x)1/ sin x

(d) lim
x→−∞

xex

(e) lim
x→(π/2)−

sec 7x cos 3x

(f) lim
x→∞

(arctanx)(lnx)
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51 Net Change

1. On Patriot’s Day last year, Meb ran the Boston Marathon. For the first two hours, Meb ran at a
constant speed of 7 mph. For the next two hours, Meb’s speed was given by v(t) = (t− 4)2 + 3, where
t was hours after he started the race.

Meb’s 12-year-old brother would like to use this information to figure out how far Meb ran in the first
4 hours of the race. How could he approximate this distance? (He’s only 12, so he doesn’t know any
calculus!)
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2. Last year, Meb’s friend Andrea also ran the Boston Marathon. For the first two hours, Andrea ran
together with Meb (at a constant speed of 7 mph). For the next two hours, Andrea’s speed was given
by v(t) = 11− 2t, where t was hours after she started the race. How far did Andrea run in the first 4
hours? Is your answer an approximation, or is it exact?
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3. Fresh Pond is a reservoir about 2 miles from Harvard, which holds drinking water for the city of
Cambridge. The amount of water in the pond changes over time due to rainfall and water being
pumped in and out of the reservoir. Suppose that the following graph shows the rate at which water is
entering or leaving the reservoir (measured in millions of gallons per day) at time t, where t is measured
in days.

(a) How could you approximate the net change in the amount of water in Fresh Pond between t = 0
and t = 8?

rate of change of amount of water in Fresh Pond

(millions of gallons / day)

1 2 3 4 5 6 7 8

−9

−6

−3

3

6

9

12

15

18

t

(b) How could you visualize the exact net change in the amount of water in Fresh Pond between t = 0
and t = 8?

(c) Does the pond have more water at time t = 3 or time t = 4?

(d) Does the pond have more water at time t = 3 or time t = 6?

(e) Does the pond have more water at time t = 0 or time t = 8?
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(f) Use a left-hand sum with 4 subintervals to approximate the net change in the amount of water
between t = 0 and t = 8. (We often use the notation L4 for “left-hand sum with 4 subintervals.”)

Then, use a right-hand sum with 4 subintervals (we’ll typically use the notation R4 for this).

1 2 3 4 5 6 7 8

−9

−6

−3

3

6

9

12

15

18

t
1 2 3 4 5 6 7 8

−9

−6

−3

3

6

9

12

15

18

t

4. Arctic sea ice grows in the Arctic winter and melts in the Arctic summer. The following is a model(13)

of the rate of growth and melt of Arctic Sea ice, r(t), from Sept 2007 (t = 0) to Sept 2008 (t = 12).
The rate is measured in millions of square kilometers per month. What is the net change in Arctic sea
ice between September 2007 and September 2008?

2 4 6 8 10 12

−0.3

−0.2

−0.1

0.1

0.2

0.3

0.4

0.5

t

(13)While the model is hypothetical, it is loosely based on data found at the National Snow and Ice Data Center website
http://nsidc.org/arcticWS21_fig1_seaicenews/2008.

http://nsidc.org/arcticWS21_fig1_seaicenews/2008
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52 The Definite Integral

1. The population of a tiny island country changes over time, as people immigrate and emigrate. Suppose
f(t) gives the rate of change of the population, where t is measured in years.

f(t) = rate of change of island’s population

(people per year)

1 2 3 4 5 6 7

−16

16

32

48

64

t

(a) Use a right-hand sum with 3 rectangles to estimate the net change in population between t = 1
and t = 7.

(b) How would you visualize the exact net change in population between t = 1 and t = 7?

Notation. We write this quantity as

∫ 7

1

f(t) dt. The variable t here is a “dummy variable”, so

we could also write it as

∫ 7

1

f(x) dx (or use any other letter in place of t without changing the

meaning). We read this as the definite integral of f from 1 to 7.

(c) Was the population larger at time t = 1 or time t = 7? How do you know?

(d) Suppose the population at time t = 2 was 2000 people. Write an expression involving a definite
integral which gives the number of people at time t = 4.
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The Definite Integral. We have three major ways of thinking about the definite integral

∫ b

a

f(x) dx:

1. If a < b, we visualize it as:

a b

y = f(x)

2. If f is a rate function, then we interpret

∫ b

a

f(x) dx as

3.

∫ b

a

f(x) dx is actually defined to be

2. (a) Evaluate

∫ 2

−1
(|t| − 1) dt.

(b) Suppose |t| − 1 gives the rate (in gallons per hour) of water flowing into and out of a tank t hours

after noon on a particular day. Which of the following is a correct interpretation of

∫ 2

−1
(|t|−1) dt?

A. It is the amount of water in the tank at 2 pm.

B. It is the amount of water in the tank at 11 am.

C. It is (amount of water in the tank at 2 pm) − (amount of water in the tank at 11 am).

D. It is (amount of water in the tank at 11 am) − (amount of water in the tank at 2 pm).
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3.

5 10 15 20

−180

−120

−60

60

120

t

The function r(t) graphed to the left gives the rate at
which water is flowing into or out of a backyard swim-
ming pool. Time t is measured in hours, and the rate
r(t) is measured in gallons per hour. At time t = 0,
there are 700 gallons of water in the pool.

(a) Write a definite integral that represents the net change in the amount of water in the pool from
time t = 0 to t = 6 hours, and find this net change exactly.

(b) How much water is in the pool at time t = 6?

(c) When is water entering the pool at the greatest rate? What is this greatest rate?

(d) When is the amount of water in the pool greatest? At that time, how much water is in the pool?

(e) Between t = 4 and t = 12, what is the net change in the amount of water in the pool? Express
your answer as a definite integral.

(f) Recall that, at t = 0, the pool contains 700 gallons of water. Is there ever another time T at
which the pool contains 700 gallons of water? If so, approximate T on the graph.

(g) Let W (t) be the amount of water in the pool at time t. Sketch a rough graph of W (t), and make
sure your graph agrees with your answers to the previous parts of this problem.

(h) Put the following quantities in increasing order:

∫ 8

5

r(t) dt

∫ 9

5

r(t) dt

∫ 10

5

r(t) dt

∫ 11

5

r(t) dt.
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53 Definition of the Definite Integral

1. Recap!

(a) So far, we have 3 main ways of thinking about the definite integral

∫ b

a

f(x) dx. What are they?

(b) So far, when are we able to evaluate

∫ b

a

f(x) dx exactly?
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2. If f is the function shown, sketch the right-hand sum R5 that approximates

∫ 7

4

f(x) dx, and write out

R5 as a sum.

4 7
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3. Suppose we have a function y = f(x) and want to estimate

∫ b

a

f(x) dx using Rn, the right-hand sum

with n rectangles.

(a) We start by slicing the area into n pieces of equal width ∆x (pictured in Figure 2 with n = 6
and in Figure 3 with n = 12).

a b x0 x1 x2 x3 x4 x5 x6 x0 xn

Figure 1 Figure 2 Figure 3

What is ∆x in terms of a, b, and n?

You can see that we label the values where we slice as x0, x1, . . . , xn. What is x0 (in terms of
a, b,∆x)?

What is x1? x2? x5?

In general, what is xk?

(b) Since we are doing a right-hand sum, we approximate the area of each rectangle using a rectangle
whose height is the height of the right side of the slice, as shown.

x0 x1 x2 x3 x4 x5 x6 x0 xn

What is the signed area of the 1st rectangle?

What is the signed area of the 4th rectangle?

What is the signed area of the k-th rectangle?

(c) What is Rn?

(d) What if you instead wanted to use a left-hand sum? What would the signed area of the k-th
rectangle be? What is Ln?
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The official definition of the definite integral. The definite integral of f(x) from x = a to x = b,

denoted

∫ b

a

f(x) dx, is defined to be

lim
n→∞

n∑
k=1

f(xk)∆x︸ ︷︷ ︸
Rn

= lim
n→∞

n−1∑
k=0

f(xk)∆x︸ ︷︷ ︸
Ln

, where ∆x =
b− a
n

and xk = a+ k∆x

provided these limits exist.

If f is continuous on [a, b], then the limits always exist.

4. In this problem, we’ll evaluate

∫ 1

0

x2 dx using the definition of the definite integral as lim
n→∞

Rn.

(a) Write a formula for Rn and simplify it. The following fact will be useful.

12 + 22 + 32 + · · ·+ n2, which can also be written as

n∑
k=1

k2, is equal to
2n3 + 3n2 + n

6

(b) What is R4? (Simplify your answer.)

(c) What is

∫ 1

0

x2 dx?
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5. Let f(x) = sinx. Suppose we want to approximate

∫ 1.5

0

f(x) dx using various left-hand and right-hand

sums.

(a) Put the following expressions in ascending order.∫ 1.5

0

f(x) dx L4 R4 L20 R20 L100 R100

(b) Find |R4−L4|. How can you visualize this? (What’s the least work you can do to find |R4−L4|?
Do you need to calculate R4 and L4?)

(c) Find |R100 − L100|.

(d) How large do we need n to be ensure |Rn −Ln| < 0.05? Why might we care to have |Rn −Ln| <
0.05?
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54 Properties of the Definite Integral

1. Remember that we have 3 main ways of thinking about the definite integral. What are they?

For the definition of the definite integral, clearly define all notation used.

2. Properties of the Definite Integral.

(a) How do

∫ 4

1

f(x) dx and

∫ 1

4

f(x) dx relate?

(b) Can you simplify

∫ 3

1

f(x) dx+

∫ 4

3

f(x) dx? How about

∫ 3

1

f(x) dx+

∫ 2

3

f(x) dx?

(c) How does

∫ b

a

3f(x) dx relate to

∫ b

a

f(x) dx? Why?

(d) How does

∫ b

a

[f(x) + g(x)] dx relate to

∫ b

a

f(x) dx and

∫ b

a

g(x) dx? Why?
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Summary.

1.

∫ a

b

f(x) dx =

2.

∫ b

a

f(x) dx+

∫ c

b

f(x) dx =

3. If k is a constant,

∫ b

a

kf(x) dx =

4.

∫ b

a

[f(x) + g(x)] dx =

3. Suppose you know that

∫ 5

2

f(t) dt = 7. Do you have enough information to evaluate each of the

following integrals? If so, evaluate; if not, explain why not.

(a)

∫ 5

2

[f(t) + 4] dt

(b)

∫ 5

2

f(t+ 4) dt

(c)

∫ 2

5

4f(t) dt

(d)

∫ 4

2

[f(t) + t] dt+

∫ 5

4

f(t) dt
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4. At the Blue Bell ice cream factory, milk is stored in a 40,000 gallon tank. Let f(t) be the rate (in
gallons per hour) of milk flowing into and out of the tank one day at time t, where t is measured in
hours after noon. At 3 pm, there are 15,000 gallons of milk in the tank.

(a) How much milk is in the tank at 7 pm? Your answer should involve a definite integral.

(b) How much milk is in the tank x hours after noon?

(c) What does 0Af (7) represent?

(d) What does 0Af (x) represent?

(e) Let M(x) be the amount of milk in the tank x hours after noon. How would you express “the
instantaneous rate at which milk is flowing into/out of the tank at 6 pm” in terms of M? In terms
of f? In terms of 3Af?
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5. Here is the graph of a function f . (The graph is composed of two straight line segments and one
semicircle of radius 3.)

1 2 3 4 5 6 7 8 9 10

−2

−1

1

2

3

4

Evaluate each of the following.

0Af (0) = 2Af (0) =

0Af (2) = 2Af (2) =

0Af (5) = 2Af (5) =

0Af (8) = 2Af (8) =

0Af (10) = 2Af (10) =

Do you see any relationship between 0Af (x) and 2Af (x)? Can you explain this relationship?
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55 Fundamental Theorem of Calculus Part 1

Last time, we defined the area function aAf (x) by aAf (x) =

∫ x

a

f(t) dt. Today, we’re going to focus on the

derivative of this area function.

1. What are the three ways we can think about the definite integral?

2. (a) What does the definition of the derivative say that aAf
′(x) is?
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By the definition of the derivative, aAf
′(x) = lim

h→0

aAf (x+ h)− aAf (x)

h
. Let’s think of f as a positive,

increasing function for now, so its graph might look something like this:

f

(b) For now, let’s think of h as a positive number (are we interested in what happens when it’s big
or small?). On the graph above, draw an area that represents the quantity aAf (x+ h)− aAf (x).
Label a, x, and h on your picture.

(c) We’d like to estimate aAf (x+ h)− aAf (x). Use a single rectangle to approximate aAf (x+ h)−
aAf (x) in a way that guarantees an underestimate. (Try to make your approximation as accurate
as possible while ensuring that it is an underestimate.)

(d) Now, use a single rectangle to approximate aAf (x + h) − aAf (x) in a way that guarantees an
overestimate.

(e) Use the two previous parts to write an inequality:

≤ aAf (x+ h)− aAf (x) ≤

Use the previous line to write an inequality about the quotient
aAf (x+ h)− aAf (x)

h
:

≤ aAf (x+ h)− aAf (x)

h
≤

(f) Using what you’ve done so far, what can you say about the limit lim
h→0

aAf (x+ h)− aAf (x)

h
? Do

you have enough information to evaluate it? If so, what is it? If not, why not?
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3. Suppose f(t) represents the rate at which water is flowing into or out of a pool at time t, where t is
measured in hours after noon. At 2 pm, there are 10,000 gallons of water in the pool.

(a) How much water is in the tank at 5 pm? Your answer should involve a definite integral.

(b) How much water is in the tank at 1 pm?

(c) How much water is in the tank x hours after noon?

(d) In this scenario, what does 2Af (x) represent?

(e) Let W (x) be the amount of water in the pool x hours after noon. How would you express “the
instantaneous rate at which water is flowing into/out of the tank at 6 pm” in terms of W? In
terms of f? In terms of 2Af?

4. Let f(x) =
1

1 + x2
.

(a) Sketch f(x).

Answer the following questions about 0Af (x); feel free to use Part 1 of FTOC as appropriate.

(b) What is 0Af (0)?

(c) On what intervals is 0Af increasing? Decreasing? How do you know?

(d) On what intervals is 0Af concave up? Concave down?
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(e) Sketch 0Af .

(f) Does your sketch remind you of a function you know? Could 0Af (x) actually be that function —
would that be consistent with what FTOC 1 tells you about 0Af (x)?

(g) Sketch 1Af on your graph in (e). How does 1Af relate to 0Af?
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56 Fundamental Theorem of Calculus Part 2

1. (Blue Bell revisited) At the Blue Bell ice cream factory, milk is stored in a 40,000 gallon tank. The
rate of milk flowing into and out of the tank t hours after noon one day is f(t) = 1000− 300t2 gallons
per hour. At 2 pm, there are 15,000 gallons of milk in the tank.

(a) How much milk is in the tank at 5 pm? Express your answer in terms of a definite integral or
area function.

(b) Express the net change in the amount of milk between 1 pm and 3 pm as a definite integral.

(c) Let M(t) be the amount of milk in the tank at time t. What is M ′(t)? What is M(2)? Using
these two pieces of information, can you find a formula for M(t)?

(d) Use your answer to (c) to find the net change in the amount of milk in the tank between 1 pm
and 3 pm.

What you just found out was extremely important!

The Fundamental Theorem of Calculus, Part 2 (FTOC 2). If f is a continuous function on [a, b],

then

∫ b

a

f(t) dt = .

2. Evaluate

∫ 2

−2
4x3 dx.

3. Evaluate

∫ 3

4

x dx.
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4. A busy bagel shop starts making bagels at 6 am each morning. One day, the rate at which bagels are
made is

r(t) =

{
30
√
t 0 ≤ t ≤ 4

7.5(12− t) 4 < t ≤ 12
bagels per hour,

where t is measured in hours after 6 am. (The graph of r(t) is below.)

1 2 3 4 5 6 7 8 9 10 11 12

30

60

t

rate (bagels per hour)

The bagel shop is open 7 am - 6 pm; on this day, customers come at a steady rate of 30 customers per
hour between 7 am and 6 pm. Each customer orders one bagel and receives it immediately.

(a) At what times on this day is the number of bagels the shop has available increasing? At what
times is it decreasing?

(b) At the end of the day, any unsold bagels are donated to a local food pantry. How many bagels
are donated at the end of this day?

(c) What is the largest number of bagels the shop has available at any point during this day?
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5. (a) Find two different antiderivatives of f(t) = 3t2 + 5.

(b) For each antiderivative you found in (a), use that antiderivative along with FTOC 2 to evaluate∫ 10

−1
(3t2 + 5) dt.

(c) In (b), you should have gotten the same answer using either antiderivative. Explain, in your own
words, why this works.

6. Find the signed area under the curve y = sinx from x = π
2 to x = π. (Should your answer be positive

or negative?)
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57 Antiderivatives

1. In January 2010 (which we’ll call t = 0), the price of a gallon of whole milk was $3.24. Suppose that,
after that, the price changed at a rate of r(t) = 1 + 1.5 sin t cents per month, where t is measured in
months. How much did a gallon of whole milk cost 12 months later, in January 2011?

2. List all of the “basic” derivatives that you can.
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We use the notation

∫
f(x) dx to mean “all antiderivatives of f” or “the most general antiderivative of

f(x)” and call this the indefinite integral of f(x).

While the definite integral

∫ b

a

f(x) dx is a number, the indefinite integral

∫
f(x) dx is a family of functions.

3. Basic Indefinite Integrals. (Know these! )

• When n is a constant other than −1,

∫
xn dx =

•
∫

1

x
dx =

•
∫
ex dx =

• When b is a positive constant,

∫
bx dx =

•
∫

sinx dx =

•
∫

cosx dx =

•
∫

sec2 x dx =

•
∫

secx tanx dx =

•
∫

1

1 + x2
dx =

•
∫

1√
1− x2

dx =
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4. Evaluate the following definite and indefinite integrals.

(a)

∫ (
3eu − u2 + 5

)
du

(b)

∫
5

7x
dx

(c)

∫ −1/e
−e

5

7x
dx

(d)

∫
(eπ + ey + πy) dy

(e)

∫
(π + x)

√
x dx

(f)

∫ ( e
x2

+ 2x · 3x
)
dx

(g)

∫ 0

−3

(√
9− x2 + x2

)
dx
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5. On a camping trip, Ali sets out from his campsite at noon to wander along a trail. We’ll describe
positions along the trail by how many meters north of the campsite they are; for example, position
−10 is 10 meters south of the campsite.

Ali’s velocity t minutes after noon is v(t) = 3t2 − 6t− 9 meters per minute.

(a) What is Ali’s average velocity between noon and 12:04 pm? Remember that average velocity is

defined to be
change in position

change in time
.

(b) What is Ali’s average speed between noon and 12:04 pm? Remember that average speed is defined

to be
distance traveled

change in time
.

(c) True or false: The average velocity of a moving object between time a and time b is simply the
average of its velocities at times a and b.

6. True or false:

(a) If F is an antiderivative of f and G is an antiderivative of g, then FG is an antiderivative of fg.

(b) If F is an antiderivative of f and G is an antiderivative of g, then F + G is an antiderivative of
f + g.
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58 Integration by Substitution

Some basic antiderivatives. Here are some of the basic antiderivatives you should know.

If n 6= −1,

∫
un du =∫

1

u
du =∫

sinu du =

∫
cosu du =∫
eu du =∫

1

1 + u2
du =

1. Warm-up. Can you evaluate the following?

(a)

∫ 4

1

1

3

√
u du (b)

∫
cos(3x) dx (c)

∫
cos(x2) dx

2. Fill in the blank in each statement:

(a)

∫
du = sin(u) + C

(b)

∫
dx = sin(x2) + C

3. Evaluate the following integrals using substitution.

(a)

∫
esin x cosx dx

(b)

∫
sinx cos5 x dx
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(c)

∫
e−2x cos(e−2x) dx

(d)

∫ eπ

1

sin(lnx)

5x
dx

(e)

∫ 4

1

x2
√

1 + x3 dx

4. Examples where substitution is useful even though there isn’t an obvious composition.

(a)

∫
tanx dx

(b)

∫ e3

1/e

4 lnx

x
dx
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5. One of the following integrals can easily be evaluated using substitution. Which one? Evaluate it.

(a)

∫
e−x

2

dx (b)

∫
xe−x

2

dx

6. Suppose g is a mysterious function, and the only thing you know about it is that

∫ 12

0

g(x) dx = π. For

each of the following integrals, decide whether you have enough information to evaluate the integral;
if so, evaluate it.

(a)

∫ 12

0

g(3x) dx

(b)

∫ 4

0

g(3x) dx

(c)

∫ 144

0

g(x2) dx

(d)

∫ 2
√
3

0

xg(x2) dx

(e)

∫ 144

0

xg(x2) dx

7. Evaluate the following integrals.

(a)

∫
ex√

2ex + 5
dx (b)

∫
x+ 1

3
√

3x2 + 6x+ 5
dx
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59 Integration by Substitution Continued

1. Warm-Up. Evaluate the following integrals; you should not need to use substitution, only algebra.

(a)

∫
(u− 5)

√
u du (b)

∫
(t+ 1)2

t
dt (c)

∫
u+ 3√
u

du

2. So far, when we’ve used substitution, we’ve generally tried to pick u so that we also see du in the
integral. However, sometimes substitution is used simply to rewrite an integral in a friendlier form.
This is the case in each of the following problems.

(a)

∫
x
√
x+ 5 dx. (Hint: Let u = x+ 5. What is x in terms of u?)

(b)

∫
2x√
x− 3

dx

(c)

∫
x

x+ 3
dx
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3. Evaluate each of the following integrals.

(a)

∫
e
√
x

√
x
dx

(b)

∫ 1

0

2x+ 3

x2 + 1
dx

(c)

∫
y · 3
√

2y + 5 dy
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(d)

∫
e3x
√
ex + 2 dx

(e)

∫
ex

e2x + 2ex + 1
dx

4. It is 10 am, and five ants have found their way into a picnic basket. Ants are notorious followers, so
ants from all over the vicinity follow their five brethren into the basket. The culinary treat awaiting
them is unsurpassed elsewhere, so once the ants find their way into the basket they choose not to leave.
Suppose the rate at which ants are climbing into the basket is well modeled by 100e−0.2t ants per hour,
where t = 0 is the benchmark hour of 10 am.

(a) How many ants are in the basket at 1 pm?

(b) How many ants are in the basket x hours after 10 am?
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60 Slicing to find Area

1. Approximate the area under y = ex, above y = x2 − 4, to the right of x = 1, and to the left of x = 3.

1 2 3

y = x2 − 4

y = ex

2. Find the area of the region bounded by y = 2− x2 and y = x.

3. Find the area enclosed by y = −2x, y = x3, and y = 1.
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4. Find the area under the curve y = lnx from x = 1 to x = e. (Please give your answer as a number,
not an integral.)

5. Let R be the region enclosed by y = arccosx, the x-axis, and x = − 1
2 . Find the area of R. (Please

evaluate your integral.)

6. (a) On the following set of axes, sketch the curves y =
√

3 sinx and y = cosx.

−π π

(b) In your picture, there should be a region which is enclosed by the two curves. Find the area of
this region. (Please give a numerical answer, not an integral.)
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61 Slicing to Solve Density Problems

1. Oil spill in Gulf of Mexico – day 1 A satellite image taken the day of an oil spill in the Gulf of Mexico
revealed that the density of oil on the water was approximately 0.5 tons per square kilometer. From
the satellite image, the area covered by the oil was roughly a square of side length 2 kilometers. What
is approximately the total quantity of oil that was spilled? Note: Oil is less dense than water, so it
stays at the surface of the water.

2. Oil spill in Gulf of Mexico – day 6

On day 6 of the oil spill, the winds in the Gulf (blowing North) have spread the oil over a larger
surface which is now roughly rectangular, with the northern and southern edges still of length 2 km
and eastern and western edges of length 5 km. But a new satellite image reveals that the density of
oil on the water is not constant anymore. In fact, this density is given by ρ(x) = 0.5− 0.02x2 tons per
square kilometer. Here x is the distance from the southern edge of the rectangular region.

(a) How would you approximate the total quantity of oil that was spilled?

(b) What is the exact amount of oil spilled?
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3. Petsi Pies is known for its chocolate pastries which are shaped like right triangles with sides of 6, 8,
and 10 centimeters. Chocolate shavings are sprinkled on each piece so that the density of chocolate is
given by ρ(x) ounces per square centimeter, where x measures distance (in centimeters) from the 6 cm
side of the pastry.

(a) Show in a sketch the meaning of x. Then, show how you will slice the pastry to solve the problem.

(b) How can you approximate the amount of chocolate in the k-th slice?

(c) Write a Riemann sum that approximates the amount of chocolate on an entire pastry.

(d) What is the exact amount of chocolate on each pastry?
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4. An ecologist marks off a square piece of forest to research with side lengths 1000 m. A river runs along
one diagonal of the forest. Assume that the number of trees per unit area depends only on the distance
s from the river and is given by ρ(s) = 1000− s trees/m2.

(a) Show in a sketch the meaning of s. How will you slice the problem?

(b) Write an integral that gives the total number of trees.
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62 More Density Problems

1. Farmer Joe and Farmer Bob have identical circular corn fields of radius 100 meters. However, they
have different ideas about how to water their fields.

(a) Farmer Joe decides to install a single high-powered sprinkler right in the center of his corn field.
Corn grows better near the sprinkler, so the yield density of corn in Farmer Joe’s field is given by

j(x) =
10000

1 + x2
stalks of corn per square meter, where x is distance from the sprinkler. We’d like

to find out how much corn Farmer Joe’s field yields.

i. Show in a sketch the meaning of x in Farmer Joe’s field. Then show in a sketch how you
would slice Farmer Joe’s field.

ii. How would you approximate the corn yield of the k-th slice?

iii. Write a general Riemann sum that approximates the total yield of Farmer Joe’s corn field.

iv. By taking an appropriate limit, find a definite integral that gives the exact yield of Farmer
Joe’s field.
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(b) Farmer Bob decides to install a 200 meter long straight irrigation pipe in his corn field. The pipe
runs right down the center of the plot, and the corn density in Farmer Bob’s plot varies with
distance to the pipe. If the density is given by b(x) = 200−x corn stalks per square meter, where
x is distance to the pipe, write a definite integral that gives the number of corn stalks in Farmer
Bob’s field.
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2. A cone of Hawaiian shave(14) ice is deliciously drizzled with fresh passion fruit purée. The cone has a
height of 8 cm and radius of 6 cm is filled flush with the top.

The density of the purée varies with the vertical distance to the tip of the cone, as some time has
passed and a lot of the purée has settled at the bottom. Let ρ(x) = 1

x+1 be the number of ounces of
purée per cubic centimeter, where x is the vertical distance from the tip.

(a) Slice up the cone into n equal slices so that each slice has about the same density of purée. How
much purée is in the k-th slice?

(b) Write an integral giving the total amount of purée in the cone.

3. Variations.

(a) Suppose that the density of purée in #2 had been given by q(v) = 1
v+1 ounces of purée per cubic

centimeter, where v is vertical distance from the top of the cone. In this case, the purée has been
recently applied, and there is more at the top than at the bottom. How much purée would there
be in the cone? (You may leave your answer as a definite integral.)

(b) Suppose that the cone in (a) had been filled only to a depth of 7 cm. Then, how much purée
would there be in the cone?

(14)The iced is shaved, but locals call it “shave ice.”
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63 Introduction to Differential Equations

A differential equation is an equation that involves an unknown function and one or more of its derivatives.
Differential Equations are a powerful tool for modeling. It is often simpler to describe a phenomenon from
the perspective of rates of change.

1. Let B(t) model the number of bacteria on a petri dish t minutes after you start an experiment.

(a) What factors do you think contribute to the growth rate, B′(t)?

(b) Write down a differential equation that encapsulates your answers to (a).
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2. Let’s look at the equation x = x2 + 3x+ 2.

(a) A solution to this equation is a .

(b) Which of the following are solutions to the equation?

A. x = −2 B. x = 3 C. x = −1

3. Let’s look at the differential equation
dq

dt
= −q2.

(a) A solution to the differential equation is a . Write the differential equation in words.

(b) Which of the following functions are solutions of the differential equation?

A. q(t) = − t
3

3

B. q(t) = 1
t

C. q(t) = 1
t+2

D. q(t) = 1
2t+1

E. q(t) =
√
t

F. q(t) = 0

(c) Can you guess any more solutions of the differential equation?
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4. (a) When we see the differential equation y′ = 3t2 − 4t, we know we are looking for .

(b) Which of the following are solutions of the differential equation y′ = 3t2 − 4t?

A. y = t3 B. y = t3 − 2t2 + 3 C. y = 0

(c) Can you guess any more solutions of y′ = 3t2 − 4t? Can you find them all? (In other words, can
you find the general solution of y′ = 3t2 − 4t?)

5. (a) Can you think of any solutions of the differential equation
dP

dt
= 2t? Can you find all solutions?

(In other words, can you find the general solution?)

(b) Can you think of any solutions of the differential equation
dP

dt
= 2P? Can you find the general

solution?
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Very important fact. If k is a constant, then the general solution of
dy

dt
= ky is: y(t) = Cekt.

6. (Problem 1, revisted) The population of a bacteria colony increases at a rate proportional to the
population size. At t = 0, the colony has a population of 500 bacteria and the colony is growing at a
rate of 100 bacteria per hour.

(a) Write a differential equation that models the bacteria population.

(b) Find a solution to your differential equation from part (a).

7. Which of the following are solutions to the differential equation
d2y

dx2
= 2x

(
dy

dx

)2

?

A. y = 1
x B. y = 17 C. y = − arctan(x) D. y = 1

x + 3
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64 Modeling with Differential Equations

1. Problem Set 32, #6).

Walter puts some money in a bank account that earns a nominal annual interest rate of 3%, compounded
continuously. Let M(t) be the amount of money he has after t years.

(a) Write a differential equation about M(t) that expresses the fact that the money is earning 3%
annual interest, compounded continuously.

(b) Interpret your differential equation in words.

Key Idea 1. Saying that two quantities A and B are proportional to each other means that one is a
constant multiple of the other. That is, A = kB for some constant k.

2. One way that psychologists study how people learn is by asking them to learn a list of nonsense
words.(15) Suppose that L(t) is the percent of such a list that a particular person has learned at time
t, where t is measured in days.

(a) A simple model for learning is to assume that learning happens at a rate proportional to the
percent of the list left to be learned. Write a differential equation that expresses this. Can you
write an initial condition?

(b) A student who has learned a fifth of the list already is currently learning at a rate of 10% of the
list per day. Incorporate this into your model.

(15)This is meant to be a “pure” experiment, in that the learners won’t have any prior knowledge that would help them with
the task.
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3. A juicy rumor is spreading through Harvard’s freshman class, which has 1600 students. The rumor
spreads at a rate proportional to the product of the number of freshmen who have already heard it and
the number of freshmen who have not yet heard it. At time t = 0, 5 freshmen have heard the rumor.

(a) If R(t) is the number of people who have heard the rumor at time t, write a differential equation
that models the situation. Can you write an initial condition?

(b) Lucy thinks that the rumor should instead spread at a rate proportional to the number of students
who haven’t heard the rumor yet. Which model (Lucy’s or the original one) do you think is more
reasonable? Why?

Key Idea 2. Differential equations can be used to model more complicated situations. When we want to
do this, a key equation is

rate of change = (rate in)− (rate out)

or rate of change = (rate of increase)− (rate of decrease)

4. A drug is being administered to a patient at a constant rate of 10 mg/hr. The patient metabolizes and
eliminates the drug at a rate proportional to the amount in his body. Let M = M(t) be the amount
(in mg) of medicine in the patient’s body at time t, where t is measured in hours. Write a differential
equation that models the situation.

5. Dante borrows $150,000 from the bank. He pays money back at a rate of $1000 per month, while the
bank charges him interest at a nominal annual interest rate of 6% per year compounded continuously.

(a) Write a differential equation that models B(t), the balance Dante owes the bank at time t, where
t is measured in years and t = 0 is the time at which Dante borrows the money. (Be careful with
units! )

(b) Which of the following gives Dante’s balance at time t?

i. B(t) = 150,000e0.06t − 12,000t

ii. B(t) = 200,000− 50,000e0.06t

iii. B(t) = (150,000− 12,000t)e0.06t
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6. A baker has 1800 mm3 of bread dough which he will allow to rise. Under normal circumstances, the
dough expands at a rate proportional to its current volume; after 1 hour of rising, it would multiply to
be e times its original size. However, on this day, mice discover the bread dough immediately after the
baker sets it out to rise; they nibble on it at a constant rate of 20 mm3 per minute. Write a differential
equation for B(t), the volume of the bread dough t minutes after the baker sets it out to rise. Can you
also write an initial condition?

7. Suppose we want to model the velocity of a falling snowflake. The physical law that governs the motion
of objects is Newton’s second law F = ma, which says that the total force on an object is given by the
mass of the object multiplied by its acceleration.

A snowflake is subject to two main forces: the force due to gravity (which is mass times the constant
acceleration of 9.8 m/s2) and air resistance, which can be reasonably modeled as being proportional
to velocity. (This is a good model only for less dense objects.)

Use this model to write a differential equation for v(t), the velocity in m/s of a falling snowflake at
time t, where t is measured in seconds.
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