Math 55a Optional Warm-Up

- This is not an actual homework assignment. It is a collection of warm-up problems, some serving as a pretext to review set theory, others more challenging. Please do not turn in; but keep your solutions handy, as some of these may appear on the first assignment.
- Recommended reading for set theory review: Halmos, Naive set theory, chapters 4-10.
- Questions marked * are harder. It's Math 55 after all. But don't worry if you have no idea how to get started on those.
- You are encouraged to discuss the homework problems with other students. Start using the \#homework channel on Slack to ask questions, or \#studygroups to connect with others and work on a problem together.
- If you have way too much time on your hands, start learning how use $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ to typeset beautiful math documents! Sign up for Overleaf at https://www.overleaf.com/edu/harvard and see the tutorials at https://www.overleaf.com/learn

Material covered: Set theory review (Halmos, chapters 4-10).

1. Let $f: X \rightarrow Y$ be a map of sets. A function $g: Y \rightarrow X$ is called a left (resp. right) inverse of f if $g \circ f=\mathrm{id}_{X}\left(\right.$ resp. $\left.f \circ g=\mathrm{id}_{Y}\right)$.
(a) Show that f admits a right inverse if and only if f is surjective (onto in Halmos' terminology). Show that, in general, a right inverse is not unique.
(b) Show that f admits a left inverse if and only if f is injective (one-to-one in Halmos' terminology). Show that, in general, a left inverse is not unique.
2. Let $f: X \rightarrow Y$ be a map of sets.
(a) For $B \subset Y$ we define $f^{-1}(B)=\{x \in X \mid f(x) \in B\}$. Show that
$f^{-1}(Y-B)=X-f^{-1}(B), \quad f^{-1}\left(\bigcup_{i \in I} B_{i}\right)=\bigcup_{i \in I} f^{-1}\left(B_{i}\right), \quad$ and $f^{-1}\left(\bigcap_{i \in I} B_{i}\right)=\bigcap_{i \in I} f^{-1}\left(B_{i}\right)$.
(b) For $A \subset X$ we define $f(A)$ to be the subset of Y consisting of all elements $y \in Y$ for which there exists $x \in A$ with $f(x)=y$. How does $f(X-A)$ compare with $Y-f(A)$? How does $f\left(\bigcup_{i \in I} A_{i}\right)$ compare with $\bigcup_{i \in I} f\left(A_{i}\right)$? How does $f\left(\bigcap_{i \in I} A_{i}\right)$ compare with $\bigcap_{i \in I} f\left(A_{i}\right)$?
3. Give an explicit bijection between $\mathbb{N}=\{0,1,2, \ldots\}$ and $\mathbb{N}^{2}=\mathbb{N} \times \mathbb{N}$.
4. At his death, a millionaire left his 10 children a million dollars in cash, all in $\$ 100, \$ 10, \$ 1$ bills, 10 -cent, and 1 -cent coins. Show that there is a way for them to split the fortune into ten stacks of equal value. (Note that this would not be true if there were $\$ 3$ bills).

5*. Given a set S, let $\mathcal{E} \subset \mathcal{P}(S)$ be such that (1) $S \in \mathcal{E}$, (2) if $A \in \mathcal{E}$ then $S-A \in \mathcal{E}$, (3) if $A, B \in \mathcal{E}$ then $A \cup B \in \mathcal{E}$ and $A \cap B \in \mathcal{E}$.
Prove that if S is finite then there is a set T and a surjective map $f: S \rightarrow T$ such that $\mathcal{E}=$ $\left\{f^{-1}(A), A \subset T\right\}$. What happens if S is infinite?

