
Math 55a Homework 3

Due Wednesday September 23, 2020.

• You are encouraged to discuss the homework problems with other students. However, what
you hand in should reflect your own understanding of the material. You are NOT allowed
to copy solutions from other students or other sources. Also, please list at the end of the
problem set the sources you consulted and people you worked with on this assignment.

• Questions marked * may be on the harder side.

Material covered: Fields, vector spaces, bases and dimension, direct sums, linear maps. (Artin
chapter 3 and 4.1-4.2 / Axler chapters 1, 2, 3.A-3.D).

0. Sometime over the weekend of September 19-20, please complete the week 3 feedback survey (in
Canvas). This is important to help us assess how well the course structure, pacing, and our efforts
at getting students to know each other are working. (There will be more surveys).

1. Let V ⊂ R[x] be the vector space of polynomials of degree at most 4 with coefficients in R,
V = {f(x) = a0 + a1x+ a2x

2 + a3x
3 + a4x

4 | ai ∈ R}. Find bases for the following subspaces of V :

(a) W1 = {f ∈ V | f(1) = f(2) = 0},

(b) W2 = {f ∈ V | f(1) = f(2)},

(c) W3 = {f ∈ V |
∫

1

0
f(x) dx = 0}.

2. Let k be any field of characteristic char(k) 6= 2, and let T : kn → kn be the linear map

(x1, x2, . . . , xn) 7→ (x1 + xn, x2 + xn−1, . . . , xn + x1).

What are the dimensions of the kernel and image of T? What changes if char(k) = 2?

3. Let k be a field, and let M be the vector space of n× n matrices with entries in k. Let S ⊂ M
be the subspace of symmetric matrices, that is, matrices A = (ai,j) such that ai,j = aj,i ∀i, j, and
let Q ⊂ M be the subspace of skew-symmetric matrices, that is, matrices A = (ai,j) such that
ai,j = −aj,i ∀i, j.

(a) Find the dimensions of S and Q.

(b) Show that if char(k) 6= 2 then M = S ⊕Q.

(c) Show that this is false if char(k) = 2.

4. (a) Find a field F4 with 4 elements! Namely, denote the elements by {0, 1, α, β} and write out
the tables for addition and multiplication in F4.

(b) If we forget the multiplicative structure of F4 and just think of it as an abelian group, is it
isomorphic to Z/4 or Z/2× Z/2?

(c) Show that this is the unique field with 4 elements up to isomorphism.
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5. Let V and W be vector spaces of dimensions m and n over a field k, and let U ⊂ V and T ⊂ W
be subspaces of dimensions a and b, and let S = {φ ∈ Hom(V,W ) |φ(U) ⊂ T}.

(a) Show that S is a subspace of Hom(V,W ).

(b) What is the dimension of S?

6. Let R∞ = {(a0, a1, a2, . . . ) | ai ∈ R}. Let ei = (0, . . . , 0, 1, 0, . . . ) ∈ R
∞ be the sequence with a 1

in the i-th place and all other terms zero, and let w = (1, 1, . . . ) ∈ R
∞ be the sequence consisting

entirely of 1’s. Describe the span of the set {w, e0, e1, . . . } ⊂ R
∞.

7.* With R
∞ as above, and for p ∈ {1, 2, . . . }, let ℓp =

{

(a0, a1, a2, . . . ) ∈ R
∞

∣

∣

∣

∞
∑

i=0

|ai|
p < ∞

}

.

(a) Show that ℓp is a subspace of R∞.

(b) Show that ℓp is a proper subspace of ℓp+1.

8.* Let

0 −→ V1

φ1

−→ V2

φ2

−→ · · ·
φn−2

−→ Vn−1

φn−1

−→ Vn −→ 0

be an exact sequence of linear maps (i.e., Im(φi−1) = Ker(φi) for all i). Show that if all the Vi are
finite-dimensional, then

n
∑

i=1

(−1)i dimVi = 0.

9.* (a) Let k = Fq be a finite field with q elements, and consider the 3-dimensional vector space
V = k3. How many one-dimensional subspaces (lines through the origin) are there in V ? How
many two-dimensional subspaces (planes through the origin) are there?

(b) How many lines through the origin does each plane contain? How many planes contain a given
line through the origin?

(c) The party game “Spot It!” (also known as Dobble overseas) features 55 cards, each of which has
eight symbols printed on it, in such a way that any two cards have exactly one symbol in common.
(In the game, each player looks at a pair of cards and tries to find their common symbol.) The
“Junior” version of the game has 30 cards with six symbols each. How do you use geometry over
finite fields, as in parts (a)(b), to build decks of cards with the required property? (Note: Spot It
decks don’t quite have the optimal number of cards.)

10.* (Optional, extra credit) (Finite geometry and perfect difference sets)1

A perfect difference set is a subset S = {s0, . . . , sq} ⊂ Z/N such that each non-zero element of Z/N
occurs exactly once as the difference si − sj (i, j ∈ {0, . . . , q}, i 6= j) of two distinct elements of S.
(In particular, N = q2+ q+1.) Example: S = {0, 1, 3} ⊂ Z/7. (Optional: find examples of perfect
difference sets in Z/13 and Z/21). This problem describes a systematic construction discovered by
J. Singer in 1938.

As in the previous problem, let k = Fq be a finite field with q elements, and let V be a 3-dimensional
vector space over k. The key ingredient in Singer’s construction is the following:

1Besides being a neat piece of recreational mathematics, perfect difference sets (and the more general notion of
cyclic difference sets) have real-world applications to error-correcting codes and to radar technology!
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Theorem. There exists an invertible linear transformation f : V → V which acts on the set of
lines through the origin (one-dimensional subspaces) in V by a cyclic permutation, so all lines occur
as the successive images of any given line L0 = L ⊂ V : denoting by N the number of lines in V ,
the assignment j 7→ Lj = f j(L) defines a bijection from Z/N to the set of lines in V . Moreover,
f acts in the same manner on the set of planes (two-dimensional subspaces) in V , with all planes
arising as the successive images Pj = f j(P ) of any given plane P0 = P ⊂ V under iterates of f .

(a) Assuming the theorem holds, show that S = {j ∈ Z/N |Lj ⊂ P0} is a perfect difference set.

(b) We now prove the theorem. Let p(x) = x3 − ax2 − bx − c ∈ k[x] be a degree 3 polynomial
which has no roots in k, and let K = k[x]/(p), i.e. the 3-dimensional vector space of polynomials
of degree ≤ 2 with coefficients in k, with a multiplication operation defined by taking the product
of two polynomials and taking the remainder mod p(x) (i.e., replacing x3 by ax2 + bx+ c, and x4

by a(ax2 + bx+ c) + bx2 + cx).

We will be using, without proof, two classical facts of field theory (take Math 123!):

(1) K is a field (containing k as a subfield);

(2) the multiplicative group of non-zero elements of any finite field is cyclic.

Let α be a generator of the multiplicative group K∗ of non-zero elements of K. Show that multi-
plication by α, viewed as a linear map f : K → K, has the properties of Theorem 1.

(Hint: take the line L0 to be the subspace of constant polynomials, i.e. k ⊂ K; which powers of α
are elements of k? take the plane P0 to be the subspace of polynomials of degree ≤ 1, i.e. the span
of 1 and x).

11. How long did this assignment take you? How hard was it? What resources did you use,
and how much help did you need? (Remember to list the students you collaborated with on this
assignment.) Did you have any prior experience with this material?
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