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An energy distribution at
thermal equilibrium



Thermal energy is statistically distributed

Thermal energy is exponentially distributed by the
Boltzmann equation: P(E) ∝ e−

E
kBT

When large numbers of systems interact and freely exchange
energy, the energy of any given system upon any given
observation follows an exponential distribution.
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Discrete energy levels (ε1, ε2, ... εM)
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Normalized probability distribution
pi = 1

Qe
−εi/kT = e−εi/kT∑M

j=1 e
−εj/kT

Relative probability of two states
pi
pj

= e
εj−εi
kT



A “Boltzmann” understanding of the
exponential atmosphere
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Air density is a
function of potential
energy

ρ(h) ∝ e
−mgh
kBT



A “Boltzmann” understanding of chemical
reactions

4 12

Relative likelihood
of two states
pA
pB = e−

∆E
kBT

Forward rate
kA⇒B ∝ e

− Eact
kBT



Counting Method to derive the
Boltzmann distribution



N weakly interacting systems divide total E
energy among them
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Fundamental question
How many, ns, of the N systems do
we expect to be in the state s that
is associated with energy εs?

average energy
of the system
ε =

∑
s nsεs∑
s ns

probability of
being in state s
fs = ns/N

average energy∑
s fsεs = ε∑
s fs = 1



Combinatorial method
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State Energy Number
1 ε1 n1
2 ε2 n2
3 ε3 n3
. . .
. . .
s εs ns
. . .
. . .

Conservation of mass and
energy∑

s ns = N∑
s nsεs = U

What is the probability of
a particular distribution
of ns?
W = N!

n1!n2!n3!...
the number of ways you can have a
specific number of particles at
each energy level



Find the distribution with the largest number
of possibilities, i.e., maximize W
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Maximize logW

logW = logN!−
∑
s
ns!

= N(logN− 1)−
∑
s
ns(log ns − 1)

Stirling’s formula
N! =

(N
e
)N



Maximize W with constraints of conservation of
mass and energy
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Lagrange multipliers
Add N and U to logW, each multiplied by an arbitrary
Lagrange multiplier (α and β).

The most probable W is that for which:

δ (logW − α
∑

s ns − β
∑

s εsns) = 0

Varying with respect to each ns gives:

−
∑

s δns (log ns + α− βεs) = 0

The Boltzmann
distribution
ns = e−αe−βεs



Using information theory
to derive the Boltzmann
distribution



The entropy of a random variable
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The entropy H(X) of a random variable X

H(X) = −
∑
x∈X

p(x) log2 p(x)

H(X) = 〈log2 p(x)〉



The entropy of a two-state system
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The entropy H(X) of a random variable X

H(X) = −
∑
x∈X

p(x) log2 p(x)

H(X) = 〈log2 p(x)〉



The entropy of a coin toss

11 12



Maximum entropy distribution with fixed mean
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Maximize entropy :

H(p) = −
N∑
i=1

pi log pi

Normalization condition:
N∑
i=1

pi = 1

Fixed mean:
N∑
i=1

piεi = E

Use Lagrange
multipliers:
pi ∝ e−λεi

An exponential
distribution of
energies is the
distribution with the
least bias.
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