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Photoreceptors

Vertebrate rods and cones. Principal structural features of vertebrate photoreceptors. (A)
Rod. The outer segment is composed of disks detached from external plasma membrane.
(B) Cone. The outer segment has membrane infoldings or lamellae instead of disks
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Dark events

Sample records of rod outer segment current in darkness (two upper
traces) and bright light (bottom trace)
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Poisson interval distribution

Cumulative distribution of intervals between successive events.
Continuous curve corresponds to: n = N (1− exp(−T/τ))
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Arrhenius Law for Thermal Dependence of Re-
acttion Rate

Arrhenius plot of frequency
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Poisson Interval Distribution

Events that occur with probability per unit time λ will have a mean waiting time 〈t〉 = λ.
The probability of the next event occurring in an interval between t and t + dt will be
exponentially distributed: P(t)dt = λe−λtdt. Shorter waiting times are more likely.
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Poisson interval distribution

Consider a discrete event that occurs with probability per unit time lambda
Divide the timeline from 0 to t into a large number N intervals, ∆t = t/N.
The probability of non-occurrence in each interval is 1− λt

N . Thus, the probability of

non-occurrence in all N intervals is
(

1− λt
N

)N
, hence

lim
N→∞

(
1− λt

N

)N
= e−λt

The probability of occurrence in the last interval is λdt

P(t)dt = λe−λt
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The Poisson Distribution
Instead of recording intervals, suppose we count the number of events that occur
in a fixed time t′. The probability that an event does not occur in the interval t′ is
one minus the probability that an event does occur:

1−
∫ t′

0
λe−λtdt = e−λt

′

The probability that one event occurs in the interval t′ is equal to the probability
that an event occurs between t0 and t0 + dt0 times the probability that an event
does not occur in the rest of the interval, t′ − t0, integrated over all values of t0:∫ t′

0
λe−λt0e−λ(t′−t0dt0 = λt′e−λt

′

The probability that two events occur in the interval t′ is equal to the probability
that an event occurs between t0 and t0 + dt0 times the probability that one event
occurs in the rest of the interval, t′ − t0, integrated over all values of t0:∫ t′

0
λe−λt0λ(t′ − t0)e−λ(t′−t0dt0 =

(λt′)2

2
e−λt

′

Proceeding in this fashion, the probability that k events occur in the interval of
time t′ is:

P(k;µ) = µk

k!
e−µ
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Low-noise at low temperatures



Frequency of seeing of a frog

A fully dark-adapted toad in a plastic box was illuminated from above by a green light.
Underneath the floor, white ‘worm dummies’ moved over a black background. The
occurrence of one or several snaps indicated that the toad had seen a worm.
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Frequency of seeing, frogs v human
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Behavioral (a) and electrophysiological
(b,c) determinations of absolute
sensitivity.
The abscissa indicates intensity in
“photoisomerizations per Rhodopsin per
second”
Thermal isomerization rate is shown by
the black arrow
Frequency of seeing for the toad is
shown by filled circles
Frequency of seeing for a human is
shown by open circles



Vision threshold depends on temperature

Correlation between rates of thermal rhodopsin isomerization and absolute threshold
intensities, expressed as rates of isomerization per rhodopsin molecule in the retina of
the toad, frog, and man
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The optimum length of a rod cell?



Longer rods→ more photon absorption
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Consider a rod cell of length L, cross-sectional
area A, and concentration of rhodopsin C.
We can determine the mean number of potential
absorption events by multiplying the probability
of absorption by a single rhodopsin molecule by
the number of rhodopsin molecules in the path
of the incident photon.
Assuming that the photon travels parallel to the
axis of the rod cell, this mean number µ = σCL.
Absorption events are Poisson distributed, and
the probability of capturing a photon is equal to
the probability of not getting zero captures.
The probability of a positive result from a
Poisson process is:

pabs = 1− e−µ (1)

= 1− e−σCL. (2)



Optimum length
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If a rhodopsin has a probability pdark of being
activated by temperature, the mean number of
activations will be this probability multiplied by
the total number of rhodopsins in the cell:

µdark = CLApdark. (3)

Since dark events are also Poisson distributed,
the standard deviation in the number of dark
events σdark =

√
µdark.

Assuming that the photon travels parallel to the
axis of the rod cell, this mean number µ = σCL.
The signal-to-noise ratio of this rod cell when a
flash of n photons is delivered to it is:

SNR =
npabs√
µdark

(4)

= n
1− e−σCL√
CLApdark

. (5)



Retinal Noise and Absolute
Threshold



Horace Barlow, 1956

It is shown that the absorption of one quantum can excite a rod in the human
retina, but that at least two, and probably many more, excited rods are needed to
give a sensation of light.
It is suggested that noise in the optic pathway limits its sensitivity, and this idea is
subjected to an experimental test.
The hypothesis is then formulated quantitatively, and shown to be able to account
for the above experiment, and also the disagreement in the literature between
those who believe that the absorption of two quanta can cause a sensation, and
those who believe that 5 or more are required.
The formulation of the hypothesis is used to calculate the maximum allowable
noise (expressed as a number x of random, independent events confusable with
the absorption of a quantum of light) in the optic pathway for the absorption of
various fractions of the total number of quanta incident at the cornea.
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More than one quantum and more than one rod
is needed to see

Hecht Shlaer and Pirenne
500 rods
5-8 photons
What is the likelihood of double hits?

Denton and Pirenne
70,000 rods
280 rods
What is the likelihood of double hits?
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Frequency of seeing and possibly seeing, Barlow
(1956)
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Subject was looking at flashes of light
similar to Hecht et al
Signaled when he saw a flash for each of
100 presentations at five intensities
300 blanks were mixed in (so we can
measure false positive rate)
The fraction of ‘seen’ form the right hand
set of dots
The fraction of ‘seen + possibly seen’
form the left hand set of dots
The subject never ‘saw’ a blank, but
‘possibly saw’ 1% of the blanks



Rods do not distinguish ‘dark’ events and ‘light’
events by themselves

What the rod detects
N = number of photons that land on the cornea
n = average number of independent events resulting from a stimulus flash
x = average number of noise events confusable with the stimulus events
a = n + x = total number of rod excitations

What the subject sees
c = the number of events which must be equalled or exceeded to get a response
Psee(a) = = probability of c or more events occurring if the average number is a

Psee(a) =
∞∑
y=c

aye−a

y!

a = n + x = total number of rod excitations
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The probability of seeing curve depends on
threshold and noise

The slope of the probability of seeing curve
We measure the slope of the probability of seeing curve with respect to a
logarithmic scale of light intensity: dPsee

d(log N)

Of the photons that hit the cornea (N), a fixed fraction are absorbed by the retina
(n/N = const). Thus,

d logN = d log n

dPsee
d(logN)

=
dPsee
d(log n)

=
dPsee
da

×
da

d log n
=
e−aac−1

(c− 1)!
× n

Use Stirling’s formula n! ∼
√

2πn
( n
e
)n . At threshold, a = n + x = c:

dPsee
d(logN)

× (2π)1/2 =
c− x
c1/2
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Fitting to two probability of seeing curves
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n
N ≈ 0.14
x ≈ 8.9
For the possible threshold: c ≈ 17
For the seen threshold: c ≈ 19

The reason our threshold of seeing is several
photons is because of dark noise.
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