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Direct detection of a single photon by humans
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Jofre Espigulé-Pons2,4, Mattias Lauwers1 & Alipasha Vaziri1,2,3,5

Despite investigations for over 70 years, the absolute limits of human vision have remained

unclear. Rod cells respond to individual photons, yet whether a single-photon incident on the

eye can be perceived by a human subject has remained a fundamental open question. Here

we report that humans can detect a single-photon incident on the cornea with a probability

significantly above chance. This was achieved by implementing a combination of a

psychophysics procedure with a quantum light source that can generate single-photon states

of light. We further discover that the probability of reporting a single photon is modulated by

the presence of an earlier photon, suggesting a priming process that temporarily enhances

the effective gain of the visual system on the timescale of seconds.
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L
andmark experiments by Hecht and colleagues in the 1940s
established that dark-adapted human subjects are capable of
reporting light signals as low as a few photons (B5–7)1.

However, whether evolutionary pressure has pushed the visual
system and the post-processing performed by the retina and brain
to detect a single photon has remained an open question1–6.
The answer to this question is of fundamental significance as it
could provide insights into the mechanisms underlying the limits
of evolutionary optimization, as well as open up fundamentally
new avenues for probing retina-signalling pathways using
quantum states of light7–9. Moreover, as noise is omnipresent
at all stages of the visual system4,10–12, it has been suggested
that using light with lower statistical variability than that of
classical Poissonian light might help to directly extract
characteristics of intrinsic noise that limits detection at low-
light levels by removing the input noise4,13. Thus, understanding
the mechanism underpinning the detection of a single photon
with only B4� 10� 19 J of energy would demonstrate that the
weakest possible, quantized optical signal is not completely
swamped by neuronal noise and other inefficiencies. This may
help to uncover more generally how biological signal detection at
the absolute physical limits is implemented.

Previous experimental attempts to approach these questions
were hampered by the lack of appropriate technologies,
low-experimental statistics in the lowest-photon range, and
non-ideal psychophysical procedures2,3,14,15. Most importantly,
all experiments so far have been performed with Poissonian
light sources such as attenuated laser pulses, which exhibit an
intrinsic and irreducible variability in the actual number of
photons emitted. Together, these limitations have led to an
inherent ambiguity about the exact number of photons required
to elicit the perception of seeing light4. By addressing the
above shortcomings, we demonstrate that humans can detect a
single-photon incident on their eye with a probability
significantly above chance. Additionally, our results lead us to
hypothesize that under such extreme light conditions, the
absorption of a photon induces a modulation of the gain in the
visual system with a characteristic temporal evolution persisting
on the order of seconds.

Results
Design of quantum optical single-photon light source. To
probe the absolute limit of light perception, we built a single-
photon quantum light source with sub-Poissonian photon number
statistics based on spontaneous parametric down-conversion
(SPDC). SPDC is a quantum optical technique in which correlated
pairs of photons (called signal and idler) are produced probabil-
istically from a higher energetic pump photon in a non-linear
crystal following energy and momentum conservation16,17

(Fig. 1a). By detecting one of the photons (idler) and sending
the other (signal) to the observer’s eye, our SPDC source
allowed us to create an effective single-photon light source
with a sub-Poissonian photon number distribution (Fig. 1a,
Supplementary Fig. 1 and see Methods section for details).
Ideally, such a source features a small ratio of multiple-to-single
photon emissions. To optimize this ratio in practice, we used the
multi-pixel sensor of an electron multiplying charge-coupled
device (EMCCD) camera as our idler detector (Fig. 1a). As the
EMCCD can detect multiple photons simultaneously, it allowed us
to identify and reject, that is, post-select, all events other than those
where a single-photon pair was generated with a higher efficiency
than with more traditional single-photon avalanche diodes (SPAD)
(Fig. 1b and Methods section).

In general, lower SPDC pump powers are beneficial, as they
generate fewer multi-photon events and thus provide a lower ratio

of multiple-to-single photons (Fig. 1b). However, this in turn
significantly increases the number of experimental trials required
to demonstrate single-photon perception above the chance level, as
a lower pump power leads also to a higher number of blank events
(Methods section). We performed numerical simulations to
quantify this trade-off (Fig. 1c) and found an optimal choice of
mean number of produced photon pairs per pump pulse (0.048)
that still allowed for a feasible number of experimental trials.
Events in which single photons were sent into the eye
(single-photon events) were identified after the experiment and
used for further analysis by post-selecting the cases where one and
only one detection was registered by the EMCCD in the idler arm.
Under these chosen experimental conditions, multiple-photon
pairs were produced only in B0.11% of all trials. The two-
dimensional detector architecture of the EMCCD allowed
identifying the majority of such two- and multi-pair events
(B80%), such that in post-selected trials the probability of having
two or more photons producing the retinal signal was only
B0.02% (Methods section). This means that from all our trials
that passed post-selection on average o1 would have led to a two
or multi-photon retinal signals. Thus, unlike in previous studies,
we can exclude the possibility that the subjects’ responses in our
experiments are due to such two- or multiple-photon events.

Humans can detect a single-photon incident on the eye.
Subjects were presented with light stimuli from the SPDC
source while using a modified version (Methods section) of the
two-alternative forced-choice (2AFC) protocol18,19. In our case,
in each trial the subject had to identify a light stimulus from a
blank delivered in a temporally separated fashion. After subjects
provided their response, they received feedback as to whether
their response was correct. Given that only in a small fraction of
cases an actual photon pair was generated by the SPDC source,
this protocol allowed us to generate a large number of catch trials
(Methods section). In addition, after the subject had provided a
response they were asked to rate their confidence in the response
on a trichotomous scale, R1–R3 (Fig. 1a).

Averaging across subjects’ responses and ratings from a total of
30,767 trials, 2,420 single-photon events passed post-selection and
we found the averaged probability of correct response to be
0.516±0.010 (P¼ 0.0545; Fig. 2a), suggesting that subjects could
detect a single photon with a probability above chance. This
conclusion was further corroborated by additional experiments
based on an attenuated Poissonian light with a mean photon
number of one. Given that for such a source the probability that
two or more photons lead to light induced, multiple-photon events
at the retina is only B3.7% allowed us to use both data sets to test
the same hypothesis and obtain a more significant P value of 0.014
using Fisher’s method (Supplementary Peer Review File, Fig. 1).

Next we investigated the distribution of subjects’ confidence
ratings for our single-photon SPDC source. As expected, given
the weak stimulus, the distribution of confidence ratings for
correct responses was dominated (88%) by low confidence R1 and
R2 responses (Fig. 2b). Considering only the answers with the
high-confidence R3 rating, we found that the probability of
providing the correct response was significantly elevated
compared with all responses (0.60±0.03, P¼ 0.0010), which
demonstrates that subjects indeed detected a single photon in the
high-confidence trials (Fig. 2a).

Not every single photon incident on the eye leads to an
isomerization and a subsequent production of a retinal signal.
Based on the efficiency of the signal arm and the visual system, we
estimate that in B6% of all post-selected events an actual
light-induced signal was generated (Methods section). Therefore,
it is expected that from all trials only this fraction should be able
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to contribute to an above chance performance as well as to
some increase in the subjects’ choice of high-confidence (R3)
ratings. Thus, the correlation between the statistically significant
sensitivity of subjects for a single-photon stimulus with their
higher confidence rating provided us with further corroborative
evidence that subjects could indeed detect a single photon.
To convince ourselves further that the observed performance of
subjects would be within a plausible regime, we used signal
detection theory to compare our subjects’ performance with the
expected performance of an ideal detector, whose operation was
only limited by intrinsic noise and efficiency (Supplementary
Note 1, Supplementary Fig. 2). We found that the performance of
our subjects did not exceed the performance of an ideal detector

(Fig. 2a) for a plausible range of reported noise and efficiencies in
the literature (Supplementary Table 1).

Finally, we systematically excluded a set of alternative
explanations as the basis for our observations, such as subjects’
bias (Supplementary Note 1) or possible contamination with
background light (Methods section). We also confirmed the overall
performance of our subjects and the experimental set-up including
our psychophysics protocol by reproducing the results of previous
experiments in the higher photon range using a classical
Poissonian light source (Supplementary Fig. 3)2,3,14. We found
the overall shape of the psychometric curves for all subjects, its
characteristic parameters such as the threshold and the index of
discriminability Dm, a measure of stimulus discrimination
sensitivity19 (Supplementary Note 2), to be consistent with
previous observations2,3,14 (Supplementary Fig. 3).

Single-photon perception is enhanced by an earlier photon. Led
by the observation that single photons could be detected by
subjects, we asked whether perception at these extreme light
conditions is limited only by dark isomerization noise events. We
analysed how the probability of correct response in single-photon
post-selected events depends on the time to the previously
registered photon in the idler arm, irrespective of the number of
trials separating the two events. Surprisingly, a strong dependence
on the temporal separation of the two events was observed
peaking at B3.5 s, with a decay time on the order of seconds
(Fig. 2c). Such a long timescale phenomenon represents more
than an order of magnitude disparity with the known integration
time of the visual system4. This result directly shows that the
probability of correctly reporting a single photon is highly
enhanced by the presence of an earlier photon within B5 s time
interval. Averaging across all trials that had a preceding detection
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Figure 1 | Schematics of the experimental set-up and characterization of

the single photon quantum-optical light source. (a) Top: schematic of the

set-up for generating single photons via SPDC. Light stimuli are triggered

(T) by subjects and coupled into a single-mode fibre entering the dark

chamber. The light is directed and focused onto the pupil (Maxwellian view)

at an angle of 23� temporal to a highly attenuated red fixation light

presented at the fovea. BBO, beta-barium borate crystal; F, bandpass and

spatial filter; HWP, half-wave-plate; L, lens; ND, neutral density filter; PBS,

polarizing beamsplitter. A flip mirror (FM) allowed for the switching of the

detection mechanism from the EMCCD to a SPAD (semi-transparent, see

Methods section for details). Bottom: schematic of the 2AFC protocol.

A 1 ms light pulse is presented together with either the first or the second

acoustic signal (intervals 1 and 2) that are separated by 800 ms. After the

second acoustic signal, the subject gives their answer (1, 2) and a

confidence rating (R1, R2 and R3; see Methods section for details.)

(b) Numerical simulation of multiple-to-single photon ratio in SPDC as a

function of mean photon pairs per pulse (that is, at different pump laser

intensities). While the multiple-to-single photon ratio decreases as a

function of mean photon pairs for both detection schemes, the EMCCD

(solid line) exhibits an improved multiple-to-single ratio compared with the

SPAD (dotted line), as the multi-pixel based detection in case of EMCCD

allows for identification and of two and multi-photon events and their

rejection. (c) Trade-off between multiple-to-single photon ratio and

required number of experimental trials. Multiple-to-single photon ratio in

SPDC using EMCCD-based detection as a function of mean photon pairs

per pulse (black solid line – same as in b) exhibits an inverse relationship

with the number of trials required to discriminate the performance of an

ideal detector from random chance level (0.5) with a statistically significant

probability (95% confidence interval; grey dotted line). The vertical grey bar

indicates the mean number of photon pairs per pump pulse that was used

in the experiments (see Methods section for details).
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within a 10-s time window, the probability of correct response
was found to be 0.56±0.03 (P¼ 0.02). Outside of this temporary
enhanced region (410 s), the probability of correct response
was not significantly above chance level (0.510±0.011, P¼ 0.2)
when averaged across all rating responses, but it was significant
(0.59±0.04, P¼ 0.02), for high-confidence R3 responses (inset
Fig. 2c). These results demonstrate that in high-confidence R3
trials subjects can detect a single-photon irrespective of the
presence of a single photon in the preceding trial. This means that

while the discussed photon-induced enhancement of the gain
leads to a transient enhancement of the probability of detection, it
is not strictly required for single-photon perception.

To more directly characterize the signature of such a transient
modulation of the visual system, we analysed the trials failing the
post-selection, the vast majority of which did not contain any
stimulus photons. For these trials, we observed an increased
probability for choosing the first-time interval for time delays
up to B4 s following the detection of the preceding photon
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Figure 2 | Single-photon perception and photon-induced temporal modulation of detection probability. (a) Perception of a single photon. Probability of

providing the correct response in 2AFC trials for all post-selected single-photon events (brown, n¼ 2,420) and high-confidence R3 responses (green,

n¼ 242) averaged across all subjects. 0.5 is the baseline and corresponds to random guessing. The horizontal dashed line indicates the upper theoretical

limit of performance of an ideal detector operating at the physiological level of detection efficiency in the absence of additional noise and using the

framework of signal detection theory (Supplementary Note 1). (b) Distribution of different confidence ratings for post-selected single-photon events in

which the stimulus was correctly identified. (c) Probability of correct response as a function of the time to the preceding single-photon event, data averaged

across subjects and ratings (n¼ 2,420). The probability of correct response for events combined at times between 0 and 10 s is significantly higher than for

events at longer times (410 s, P¼0.02). 0.5 is the baseline and corresponds to random guessing. (i–iii): three temporal regions corresponding to different

scenarios of the model in Fig. 3a. Solid line is a fit to the model illustrated in Fig. 3a and discussed in Supplementary Note 3. Inset shows the same data but

for the high-confidence rating only (n¼ 242). The additional panel on the right is the probability of correct response for all combined R3 events outside
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illustrated in Fig. 3b (w2¼ 2.7) and discussed in Supplementary Note 3. In a–d error bars denote s.e.m.
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(Fig. 2d), with a decay on the same timescale as in Fig. 2c. This
demonstrates that the absorption of a single photon in the visual
system produces persisting and significant behavioural differences
that could be detected through our 2AFC paradigm. Thus,
consistent with both observations, we suggest that the detection of
a single photon – or equally a photon-like noise event (that is,
spontaneous isomerization) – temporarily increases the effective
gain of the visual system under extreme low-light conditions,
such that a second temporally coinciding photon (or photon-like
noise event) can be behaviourally detected with a higher
probability.

We aimed at finding a model that would explain our above
observations (Fig. 2c,d) while at the same time making a
quantitative prediction about the expected distribution of
confidence ratings. To do so we devised a model in which
the probability of detection by the subject was proportional to
the product of the combined number of photons and photon-like
noise events with the system’s gain (Fig. 3a,b). The gain’s
photon-induced characteristic temporal profile (Fig. 3c) was
extracted by fitting the data (Fig. 2c,d) to the model (Fig. 3a,b,
Supplementary Note 3). Within this model the higher probability
of correct response for short delays (Fig. 2c) can be understood as
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a result of an increase in the system’s gain due to the previously
absorbed photon, irrespective of the 2AFC time interval in
which the photon was presented (Fig. 3a). The relative change in
the fraction of interval 1 answers (Fig. 2d) is due to the temporal
separation of trials resulting in a higher contribution of the
gain to the amplification of a photon-like noise event in the first
compared with the second time interval (Fig. 3b). Furthermore,
using the extracted gain kernel (Fig. 3c), the actual delays
between individual single-photon events in the experiment and
by introducing decision criteria used by the subjects to assign
their confidence ratings (Fig. 3a,b, Supplementary Note 3),
our model could quantitatively explain the experimentally
observed distribution of ratings and the probability of correct
response for each rating in our single-photon experiments
(Fig. 3d–f; Supplementary Note 3).

Discussion
To our knowledge, these experiments provide the first evidence
for the direct perception of a single photon by humans. Previous
psychophysics studies have been performed only in a regime
where multiple photons could reach the retina due to both the
used light intensities and the technological lack of a light source
with a sub-Poisson photon number distribution. The explanation
of the corresponding psychophysics data required either
assuming unrealistically low-quantum efficiencies or the
assumption of an additional multiplicative noise1–3. However,
our single-photon data show that the subjects’ performance
(Fig. 3d–f) can be readily accounted for by physiological values of
the overall quantum efficiency of the eye (Supplementary Table 1)
and a Poisson distributed dark isomerization rate suggesting
single-photon perception is not limited by further down-stream
inefficiencies of the visual system and the brain.

Our light source and experimental protocol allowed us to further
discover a single-photon-induced priming effect that is character-
ized by a temporal modulation of the gain of the visual system. It is
well established that the extreme dynamic range (approximately
nine orders of magnitude)20 and sensitivity of the visual system is
mediated by a light-dependent modulation of the system’s gain.
Although over a wide range the sensitivity of the visual system is
inversely proportional to the average light level, our data show that
at the single-photon level, a higher transient detection probability
for a photon is obtained if another photon was absorbed
previously. This phenomenon is conceptually reminiscent
of coincidence detection, although at timescales orders of
magnitude slower and likely involving a different physiological
mechanism from the known retinal circuit computations21,22.

The retinal and brain-circuitry mechanisms underlying our
above observations remain the scope of future work. Further studies
aimed at different scales and combining different methodologies
such as electroencephalography15 or magnetoencephalography23

with psychophysics might allow to elucidate possible role of
top–down cortical effects, including visual attention or brain
oscillations, in the subjects’ performance and choice of confidence
ratings. In addition, post-mortem physiological studies on the
human retina would be likely required to elucidate any involved
retinal circuits mechanisms on the cellular level.

Furthermore, given the inherent quantum nature of light and
the fact that single photons can be prepared in superposition
states of space, time, energy and other degrees of freedom, our
study opens up new, speculative possibilities to investigate to
what extent such states may also bear unique physiological
signatures as well as to test theoretical proposals that use human
observers for experimental tests of quantum non-locality24–27.
Finally, using quantum technologies to generate sub-Poissonian
photon number distributions allows experiments to be performed

with a reduced input noise into the visual system and
consequently facilitates a more direct access to the internal
system’s noise, which may provide new avenues for probing yet
undiscovered retinal pathways.

Methods
Psychophysics experiments protocol. Three subjects participated in the
experiments. All were male, in their twenties and had optimal vision, in Subject A’s
case corrected by contact lenses. The experiments were approved by the ethics
committee of the University of Vienna and participants participated entirely
voluntarily and were fully informed of the aims and methods of the experiments.

All experiments were conducted inside a light-proof chamber (B1� 1� 2 m)
located in a dark room. The subjects wore headphones through which they could
hear sounds that heralded the light and control pulses, respectively, as well as
feedback on their response. Foam-filled panels provided good acoustic isolation
such that no visual or auditory cues were available that could be potentially used by
the subjects to infer the time interval in which the single photon stimulus was
presented. After a period of B35–40 min, a dark-adapted subject fixated with his
right eye on a barely visible red light, presented normal to the cornea, with the
subject’s head kept in position by a bite bar and a headrest. The fixation light was a
660 nm LED (full-width at half-maximum¼ 5 nm) operated at B6 mW output
power, which was further attenuated with OD 6.5 filters before impinging normal
to the cornea. The stimuli were presented in a Maxwellian view (that is, light
focused onto the pupil) B23� temporal to the fixation light and the main optical
axis of the eye. The chosen position ensured that the light stimuli were presented to
the location on the retina with the highest density of rod cells, the main mediators
of scotopic vision.

The subjects triggered trials by themselves and were instructed to proceed at
whatever pace they felt comfortable. On the triggering of a trial, the subject was
presented with two intervals each of 1 ms duration and separated by B800 ms,
with the initiation of each interval being heralded by a synchronous acoustic signal
of B10 ms duration. One trial on average took B2.5 s, but subjects could pause for
a longer time if they wished to do so. One of the two intervals was pseudorandomly
chosen to trigger a possible single photon from SPDC around the peak rod
sensitivity (B500 nm), while the other interval was a ‘blank’. After the second
interval the subject indicated which of the two intervals they thought contained the
stimulus photons (interval response) and thereafter provided a confidence rating
(R1–R3; Fig. 1a). Subsequently, subjects received acoustic feedback as to whether
their interval choice matched the randomly chosen interval to contain the stimulus.
This feedback helped subjects to remain alert and motivated throughout the entire
session. The prerequisite is, however, to ensure that subjects did not use any cues
that allowed them to infer the time interval into which the photon was emitted. To
do so we analysed the performance of subjects in single-photon SPDC trials where
no photons were detected by the EMCCD and could use these as catch trials. In the
majority of these trials (B95%) no photon pair was generated and thus no photons
were actually sent to the subjects’ eye. We found that in these catch trials the
probability of correct response was not different from the 0.5 baseline for both, the
combined and the high-confidence responses (0.505±0.003, P¼ 0.08 and
0.507±0.01, P¼ 0.3, respectively).

Before collecting data, subjects were extensively trained using a classical light
source with photon number between 1 and 15 photons at the cornea
(Supplementary Fig. 4a). The improved performance with experience is clearly and
quantitatively visible (Supplementary Fig. 4b,c). Subjects typically required 6–8
sessions, performing one session a day, to reach their optimal performance level
(Supplementary Fig. 4b,c). Each session tookB2 h, when including dark adaption.

During data acquisition, each subject went through up to 20 sessions. Still this high
amount of sessions was not enough to obtain statistically significant performance for
individual subjects, and therefore we pooled the data together to increase significance
(Fig. 2a–d). As subject’s sensitivity and criteria used to assign the confidence ratings
might vary in psychophysics trials28, we aimed to minimize or normalize possible
factors causing variability to achieve maximum sensitivity and similarity across
subjects by using extensive training of the subjects and using our 2AFC paradigm.

Since subjects showed significantly higher performance for the high-confidence
rating R3 events (Fig. 2a), we analysed the statistical distribution of these events in
more detail. The time between correct high-confidence responses was well
described by an exponential distribution (R2¼ 0.98) suggesting these correct events
occur randomly in time, as expected (Supplementary Fig. 5a). In addition, the
distribution of the times when correct high-confidence responses occurred during a
session (Supplementary Fig. 5b) was not significantly different from a uniform
distribution (P¼ 0.07, Kolmogorov–Smirnov test) demonstrating that the
performance of the subjects is approximately constant and that subjects performed
equally well throughout the whole duration of the session.

Finally, we verified that performance in single-photon trials was not correlated
with the feedback received in the previous trial, suggesting that the observed effect
was not due to increased attention on the part of the subject (Supplementary Fig. 6).

SPDC set-up and components. In SPDC high-energy photons decay
spontaneously in a non-linear crystal without inversion symmetry under energy
and momentum conservation into two lower energetic photons called the signal
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and the idler. Typically only B10� 9–10� 12 of the incident photons lead to the
generation of a pair, but due to conservation of energy and momentum, the
photons of a pair are always generated together and in a correlated manner.

A diagram of the experimental set-up for the SPDC source experiments is
shown in Fig. 1a. To prevent background light from impacting upon the
experiment, the whole-optical SPDC set-up was constructed within a light-proof
container. The single photons are produced via SPDC inside a 1-mm-thick beta-
barium borate crystal cut for non-degenerate type-I phase-matching at the desired
wavelengths (B504 and 561 nm; 47.6o). The crystal was pumped with 10 ns,
266 nm laser pulses from a diode-pumped, passively Q-switched laser, capable of
triggered operation of up to 10 kHz. We chose this non-degenerate configuration
such that the wavelength of idler and signal mode coincided with the maximum
quantum efficiency of our custom-coated Andor iXon Ultra EMCCD camera and
the peak of the human rod response, respectively. The frequency modes were
selected by filters (Semrock LL02-561-12.5; l¼ 561.4±1.1 nm and Thorlabs
FELH0500þ Semrock TBP01-501/15, respectively) and translatable irises. A flip
mirror in the idler path allowed for the switching between the EMCCD and SPAD
detectors. Both the EMCCD and the SPAD were used to measure g(2)(0) values
(Supplementary Fig. 1), while only the EMCCD was used in single-photon
experiments with actual subjects. Both detectors were never used simultaneously.

The signal mode was coupled into a single-mode fibre with B40% efficiency
after spectral filtering. The angle of the tunable TBP01-501/15 filter relative to the
optical path allowed for the fine-tuning of the bandwidth to B500–508 nm, with
absorption variation across this range being negligible.

The alignment of the SPDC source was performed by fibre-coupling the
frequency-filtered emission into single-mode fibres that were connected to SPADs.
The correlated signal and idler modes were found by translating the fibre-coupler
and optimizing the coincidences between detected photons using an electronic
circuit. In the single-photon SPDC experiments, the stimulus block was generated
by a single trigger pulse to the ultraviolet laser and ‘successful’ events were post-
selected based on the EMCCD camera registering one and only one photon.
Because of the non-unity mean photon pair per pulse rate (0.048 – corresponding
to a ultraviolet laser power of B150 mW) and additional EMCCD noise (clock-
induced charge rate of B0.04), an experimental session typically consisting of one
thousand trials (¼ trigger pulses) yielded B80 single-photon events passing the
post-selection. The optimal EMCCD operating settings were determined by a
combination of the EMCCD camera’s theory of operation, numerical simulations
and experimental testing. The settings of the EMCCD camera as utilized in the
experiment are given below as well as in Supplementary Table 2.

Characterization and performance of the EMCCD camera. In this work, the
expected photon number per EMCCD pixel in the single-photon detection regime
is o0.1. Therefore, the application of a fixed count threshold, above which one
photon is said to have been detected, typically yields best results29. We empirically
determined the distribution of the EMCCD counts to be normal with an average of
200 and a s.d. of 3.5 counts by operating the camera in the absence of stimulus light
and with its external shutter closed. Therefore, for our particular camera, we set the
threshold as 220 EMCCD counts, which is the B6s value above the readout noise
(200 counts). Furthermore, the readout region of interest was a three-by-three pixel
area and events were classified as single-photon events if this threshold was
exceeded on one and one pixel only.

To minimize intrinsic noise events, the EMCCD camera (Andor iXon 897
Ultra) must operate in a continuous long series kinetic mode – this behaviour was
not specified by the camera manufacturer but was noticed experimentally to
produce the best results. On reception of a trigger pulse, the experimental control
software waited for a signal that the camera has begun its next acquisition. As the
output of the laser has a delay ranging between B35 and 50 ms following the
reception of this trigger pulse, the exposure time of the camera was set to 100 ms to
ensure synchronization between the camera and the laser. However, exposure time
is a non-critical variable and can be increased without noticeable degradation of
performance, as the dominant noise mechanism in this regime is clock-induced-
charge, a mechanism entirely independent of the length of the exposure.

The most effective settings for the EMCCD camera were determined by a
combination of the EMCCD camera’s theory of operation, data collection and
numerical simulations. The settings of the EMCCD camera when run in single-photon
counting mode as utilized in the experiment are given in Supplementary Table 2.

The heralding efficiency, that is, the probability for a single photon impinging on
the cornea provided its partner is detected by the EMCCD, of the SPDC source in
combination with the EMCCD detection was estimated at B20%. This was determined
based on the heralding efficiency measured directly with SPADs (coincidence to trigger
single photon rate), but taking into account their detection efficiency (B40%) as well as
the noise (clock-induced charge rate B0.04) of the EMCCD. This value of the
heralding efficiency was also consistent with numerical simulations.

Elimination of two and higher number photon states. One of the key advantages
of using the single photon SPDC source in combination with a multi-pixel
detection array such as an EMCCD in our study was that it allowed for the
identification of cases in which two or higher number photon states were
generated, which could then be excluded from further analysis through post-
selection. This was possible because of the high quantum efficiency of the EMCCD

that we employed for detecting the idler photon and also because, unlike when
conventional SPADs are used, the spreading of the spatial mode of the idler beam
onto a three-by-three pixel region of the EMCCD allowed for the detection of trials
in which two or multi-photon pairs were generated. At the SPDC pump power
used in the experiment (laser power¼ 150 mW) which yielded a mean photon pair
rate per pulse of 0.048, the rate of two and multi-pair events was already highly
reduced (B0.11%). Moreover, using EMCCD in the above configuration allowed
us to detect B80% of such cases where two or a higher number of photons arrived
at the EMCCD and such events were discarded during the post-selection. This
overall ability of the EMCCD to identify two and multi-photon events, together
with the efficiency of the signal arm, the transmission efficiency of the ocular
medium and the quantum efficiency of the photo isomerization left us with only
B0.02 % of post-selected trials in which two or more photon states were generated
by the crystal, misidentified by the EMCCD camera as a single-photon event and
elicited a two- or multiple-photon signal on the retina. This fraction of trials that
lead to multiple-photon events was obtained from a stringent analysis of the g(2)(0)
function (see above) and taking into account measured values for photon loss and
detector inefficiencies in the signal and idler arms. This means that from our 2,420
trials out of B30,000 that passed the post selection, on average o1 multiple-
photon event would have occurred at the level of the retina, which we feel can be
safely ignored. Thus, unlike in previous studies we can exclude the possibility that
the subjects’ responses were due to two- or multiple-photon events.

Heralding efficiency of the SPDC source. A commonly used metric to quantify
the quality of the single-photon source is the heralding efficiency. For a source
based on SPDC this denotes the probability that a photon was present in the signal
arm conditioned on the detection of the idler photon. For our set-up the heralding
efficiency was B20% (see above).

This imperfect heralding efficiency affected neither the ability of subjects to detect
single photons nor the validity of our observation on single-photon-induced
modulation of the sensitivity of the visual system. This is because even a low
heralding efficiency would only lead to a higher number of blank trials but would not
lead to more than a single photon being present at the subjects’ cornea. Furthermore,
our main results are in good agreement with the heralding efficiency (B20%) and
the overall quantum efficiency of the eye estimated previously (B30%, see
Supplementary Table 1). Based on these values, the maximum theoretical probability
of correct response was estimated to be B0.53 (all post-selected trials, see Fig. 2a,
Supplementary Fig. 2). We also note that this calculation does not hold in case of
dividing the post-selected trials into different ratings, for example, in case of the
high-confidence rating R3 events, this data effectively already presents a further
post-selection or subset of all experimental trials, in which with the high probability
visual system indeed received and detected a single-photon event.

Numerical simulations for required number of trials. The SPDC single-photon
light source and the optical set-up were simulated using the Monte Carlo method,
including a simulation of the output produced by the EMCCD. In the simulation,
SPDC photon pairs were pseudorandomly generated from a Poisson distribution
determined by the mean number of pulse pairs. Experimentally measured
transmission values for both arms (signal and idler) were used to obtain
probabilities of the photon numbers incident on the eye and the EMCCD.

The idler photons of a pair that survived transmission through the set-up were
pseudorandomly distributed onto EMCCD pixels based on the measured beam
profile. A simulated number of EMCCD counts was generated for each pixel in the
three-by-three region of interest, accounting for all the stages between detection of
the photon and the electronic readout, including the stochastic gain mechanism.
A Monte Carlo simulation was chosen to fully account for the effects of possible
serial register clock-induced-charge. First, clock-induced-charges were accounted
for by the pseudorandom addition of an electron to the photoelectron counts in the
pixel. The combined photoelectrons and clock-induced-charge electrons are then
carried through the EMCCD register with a probabilistic gain applied to each
electron individually and at each register stage. The gain (G) is given by,

G ¼ ð1þ pÞr ð1Þ
where p is the probability of an electron producing a secondary electron as it is
shifted through the register and r is the number of stages in the register, which in
our case was 512.

Additionally, a probabilistic serial register clock-induced-charge is also
accounted for at every step. This probability was determined by matching the
simulated data to the experimental count distribution. Finally, the total
number of electrons is then converted into a readout number of counts,
based on the experimentally observed distribution, to give an EMCCD count
number for each pixel.

For each trial, the number of pixels with an above-threshold number of counts
was then compared with the number of photons remaining in the signal arm.
Repeating this multiple times allowed for the generation of the expected photon
number distribution impinging on the eye for different detected photon numbers at
the EMCCD.

The number of experimental trials required was estimated by using the
probability of correct response (B0.516) based on an ideal detector limited by
physiological estimates of noise and efficiency and the simulated fraction of events
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passing the post-selection for the different set-ups. The necessary number (n) of
single-photon trials (that is, post-selected trials) required to bring the expected
probability of correct response to above chance at the 95% confidence level
(z¼ 1.96) was then calculated by,

n ¼ z2 p � ð1� pÞ
ðp�mÞ2

ð2Þ

where p is the expected probability of correct response and m is the value at random
chance (that is, m¼ 0.5). The total number of trials that would need to be
performed to reach this many post-selected events as a function of source and
power could be calculated by simply dividing by the expected fraction of events
passing the post-selection criteria.

Similarly, the number of required experimental trials when using an SPAD as
an idler (trigger) detector was calculated, with the SPAD’s binary detection
modelled by a binomial trial based on their known efficiency.

Furthermore, the expected g(2)(0) values were also simulated analogously
(solid lines in Supplementary Fig. 1). We simulated propagation and simultaneous
detection of signal photons in both arms behind a 50/50 beamsplitter, together with
coincident detection of a photon in the idler arm.

g(2)(0) correlation function measurement. Attenuated continuous wave (CW)
laser light and the Fock states of SPDC have different photon number distributions,
which can be measured and distinguished with the second-order quantum corre-
lation function g(2)(0) (ref. 30), which relates the mean photon number to its s.d.:

gð2Þð0Þ ¼ 1þ oðDnÞ24�on̂4
on̂42

ð3Þ

where Dn is the s.d. on the photon number n, and oy4 represents the average.
It is evident from equation (3) that in the case of Poisson distributed coherent
states, in which the variance is equal to the mean (that is, oðDnÞ24 ¼on̂4),
g(2)(0)¼ 1 and that for a one photon Fock state with zero variance, g(2)(0)¼ 0.
The second-order quantum correlation function thus represents a good and
universally accepted test for the quantum nature of a light source, especially as it
can be measured using a simple Hanbury Brown and Twiss interferometer31.
To do this, we fibre-coupled the SPDC signal emission into a single-mode
fibre-beamsplitter (Thorlabs) whose outputs were directly connected to two
additional SPADs. The idler arm fibre was also detected with an SPAD. In this
configuration, the g(2)(0) measurement reduces to:

gð2Þð0Þ ¼ Nc3Ni

Ns1Ns2
ð4Þ

where Ni is the number of counts in the idler arm, Ns1 and Ns2 are the counts at the
two detectors in the signal arm coincident with an idler count, and Nc3 is the
number of triple-coincidences between the idler arm and both arms of the signal.
Our coincidence window was set to the laser pulse duration (10 ns), as all
intra-pulse pairs are indistinguishable in the final experimental configuration.

We measured the g(2)(0) value of our SPDC source with both an SPAD and the
EMCCD camera in the idler (trigger) arm. The results of both measurements are
depicted in Supplementary Fig. 1, and show the expected dependence on the mean
photon pair per pump pulse, which in turn is a function of pump laser intensity.
The experimental results are in line with numerical simulations taking into account
the parameters and theory of operation of both the SPAD and EMCCD detectors29.
These numerical simulations also allow for the comparison of the ratio of
multiple-to-single-photon events passing the post-selection criteria for the
EMCCD and SPAD configuration respectively (Fig. 1b).

Most importantly though, using an EMCCD results in a high increase in
triggered and usable single-photon events, due to the improved quantum efficiency
(95% versus B40%) of the EMCCD compared with the SPAD, the lack of
additional fibre-coupling losses (B60%) and the EMCCDs partial ability to identify
and reject cases in which more than one photon had been emitted in the idler arm
(multi-pair emission), due to its pixel-array structure.

Poisson light source set-up. We used a classical Poisson light set-up for
our control experiments at high photon numbers and for training purposes.
A schematic showing a simplified set-up of the CW experiments is shown in
Supplementary Fig. 4a. The Poisson light source used in this work was a multi-line
continuous wave argon ion laser (LASOS). A filter (Semrock TBP01-501/15) in
combination with an acousto-optical modulator (AOM; AA Opto-Electronic) were
used to select wavelengths around the peak wavelength of human rod cell’s
absorption curves between 495 and 505 nm, with the dominant line of the laser
(488 nm) being filtered-out by this method. Stimulus pulses were sent to the
subject’s eye by activating the AOM to deflect light into a single-mode fibre.
The deflection period was 1 ms and the voltage applied to the AOM modulated the
power of the deflected and hence coupled light. The output of this single-mode
fibre was collimated and focused on the pupil of an eye using a lens with a focal
length of 750 mm. Neutral density filters further decreased the power of the light to
the desired low-photon regime. A 50/50 beamsplitter was placed in between the
focusing lens and the subject’s eye, to allow the experimental photon levels to be
monitored by coupling the non-experimental arm of the split light into a
multi-mode fibre, whose output was attached to an SPAD (Perkin-Elmer

SPCM-AQR-14-FC). The output of the SPAD was gated, and only counts
simultaneous with the light being presented (1 ms). However, as the dark count rate
of these particular SPADs is B102 s� 1, there was a mean dark count signal of
B0.1 per trigger period. No background-subtraction was performed.

The experiments were performed at seven different mean photon numbers from
20 photons with increasing steps of 20 up to a mean of 140 photons. Individually
characterized neutral density filters and a low intensity power metre were used to set
these photon number levels. The AOM was calibrated before each experimental
session to set the precise number of photons at the cornea. Photon statistics were
collected using the aforementioned SPAD for different voltages applied to the AOM
to obtain a calibration curve. We ensured that for each voltage the distribution
followed Poissonian statistics. Using the obtained calibration curve and known
efficiency of the SPAD, the AOM voltage was set accordingly to achieve the desired
photon numbers during the experiment. This was also confirmed by simultaneously
recording the photon numbers in the non-experimental arm of the 50/50 beamsplitter
with the SPAD during all experimental trials. Unwanted additional background light
was tested for by observing both the background count rate of the SPAD in the
experimental set-up and when the detection region of the SPAD was completed
blocked from light. No significant difference in background level was observed.

Several sessions a week were conducted for each subject. Each session consisted
of 165 semi-randomly scrambled blocks each containing five trials of the same light
intensity. The ordering of the presentation of each light intensity was
pseudorandomly shuffled by the computer control programme at the beginning of
each experimental session without the subject or the experimenter having any
knowledge of this order. Each light level was then presented in five consecutive
trials, before the next light level was presented. The subject was informed that the
level of the presented light was to change by a slightly prolonged beep through
headphones. The different light levels were looped through in this manner until the
required number of trials at each light level for that session had been performed,
generally 75 per photon number per session.

Statistics. Unless stated otherwise, P values are stated as the Fisher exact test.

Mathematical modelling. Detailed description of the mathematical model based
on the Signal Detection Theory that we used to fit our data is presented in the
Supplementary Note 3. Parameters of the model obtained by fitting the data are
shown in Supplementary Table 3.

Data availability. The data supporting the findings of this study is available from
the corresponding author on request.
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