## COUNTING MOLECULES

BACTERIAL CHEMOTAXIS
Prof. Aravi Samuel
David Zimmerman
Physics/Neuro 141
Week 5

## BERG AND BROWN, 1972

## ESCHERICHIA COLI



- Comparison of the size of man, E. coli, and part of E. coli's flagellar motor.


## Three-dimensional tracking



- Digital plots of the displacement of a wild type bacterium.
- Tracking began at the points indicated by the large dots.
- The plots are planar projections of three-dimensional paths.


## A BIASED RANDOM WALK



- The data from the serine (top) and the aspartate (bottom) experiments plotted as the logarithm of the fractional number of runs of length greater than a given length.
- a, Runs in the control experiment; b, runs down the gradient; c, runs up the gradient


## THE IMPULSE RESPONSE



- A schematic illustration of experiments in which a tethered cell is simulated by ejection of a charged chemical from the tip of an iontophoretic pipette.
- The tethered cell is driven by one of its own flagellar motors.
- The response of tethered wild-type cells to a pulse of attractant (aspartate or a-methylaspartate) delivered iontophoretically.
- The dotted curve is the probability of CCW rotation (the bias). The stimuli were equivalent to a pulse that increases the receptor occupancy by 0.19 for a period of 0.02 sec .


## BERG \& PURCELL 1977

## The Perfect Monitor - Wingreen 2016



- Simple measurement devices for concentration.
- The perfect monitor is permeable to ligand molecules and estimates the concentration $c_{0}$ by counting the molecules in its volume during time $T$

■ Since the molecules diffuse independently, the number of molecules $N$ will be Poisson distributed.

- Since for the Poisson distribution the variance equals the mean, i.e. $\delta N^{2}=\bar{N}:$

$$
\frac{\delta c^{2}}{c_{0}^{2}}=\frac{\delta N^{2}}{\bar{N}^{2}}=\frac{1}{\bar{N}}=\frac{1}{c_{0} V}
$$

- In time $T$, it can make $M \approx T / \tau_{D}$ independent measurements, where $\tau_{D}$ approxa ${ }^{2} / D$ is the turnover time. This reduces uncertainty:

$$
\frac{\delta c^{2}}{c_{0}^{2}}=\frac{1}{M \bar{N}}=\frac{1}{\left(T / \tau_{D}\right) c_{0} V} \approx \frac{1}{D a c_{0} T}
$$

## PATCHY RECEPTORS



■ The path of a diffusing molecule that has touched the surface of a cell of radius $a$ at a sequence of points A, B, . . . F.

- The receptor patches, shown shaded, are of radius $s$.

■ A and B constitute independent tries at hitting a patch, but C and D do not.
■ Note between A and B the excursion of distance s perpendicular to the surface of the sphere.

## PATCHY RECEPTOR CALCULATIONS

- The probability $P$, that a molecule now located a distance $s$ from the sphere of radius $a$ will hit the surface of the sphere at least once before escaping to infinity is equivalent to the "capture probability" which we now rewrite as:

$$
P_{s}=\frac{a}{a+s}
$$

■ The probability that a molecule now at $r=a+s$ will execute exactly $n$ excursions to the surface, separated by reappearances at $r=a+s$ and followed by diffusion to infinity, is $P_{s}^{n}\left(1-P_{s}\right)$. The average number of excursions is:

$$
\bar{n}=\sum_{n=0}^{\infty} n P_{s}^{n}\left(1-P_{s}\right)=\frac{P_{s}}{1-P_{s}}=\frac{a}{s}
$$

## PATCHY RECEPTOR CALCULATIONS, CONT'D

■ The probability of not hitting a receptor patch in a single random encounter is $\beta=1-\left(N s^{2} / 4 a^{2}\right)$.

- If the contacts we have just enumerated can be taken as independent tries, the probability that a molecule starting at $r=a+s$ survives all subsequent contacts until it escapes to infinity is:

$$
\begin{aligned}
P_{e s c}=\sum_{n=0}^{\infty} \beta^{n} n P_{s}^{n}\left(1-P_{s}\right) & =\frac{1-P_{s}}{1-\beta P_{s}} \\
& =\frac{4 a}{4 a+N_{s}}
\end{aligned}
$$

- Since 1 - $P_{\text {esc }}$ is the fraction of all arriving molecules that ultimately are captured, we have for the resulting current:

$$
\frac{J}{J_{\max }}=\frac{N s}{4 a+N s}
$$

