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MICROSCOPIC THEORY




BROWNIAN MOTION

1D random walk

Particles start at the origin
Step Size = §

Step Interval = 7
Instantaneous velocity = §/7

Lysozyme

B Mass=m =23 x 10~ 2°g
B RgT = 4 x 10~ "g cm?[sec?

m (v2)"/? =13 x 103cm/sec




BROWNIAN MOTION, THE FIRST MOMENT

m Each particle steps to the
right or to the left once every
T seconds, moving at velocity
+vy a distance § = +vyr.

m the position of a particle after
the nth step differs from its
position after the (n — 1)th
step by £0:

m The mean displacement does
not change:

(x(n)) Z [Xi(n —1) £ 4]

- %‘_zz;xi(n 1)
— (x(n - 1))

m If (x(0)) = o, then (x(t)) =




BROWNIAN MOTION, THE SECOND MOMENT

Squared coordinate of each particle
changes with time:

X2 (n) = x2(n —1) £ 26x;(n — 1) + &6

Mean squared coordinates of all
particles grows with time:

x=0

(x*(n)) x2(n)

m The probability of finding Z
particles at different points at
t = 1,4, and 16 sec.

m Standard deviations increase
with the square root of time

N
% > e (n —1) £20x(n — 1) + 67]

i=1

= ((n — 1)) + &2




THE DIFFUSION COEFFICIENT

m Since x;(0) = o for all particles i, (x*(0)) = o. Thus, (x3(1)) = 42,
(x2(2)) =282, (x3(3)) = 36, ..., and (x3(n)) = ns>.
m It follows that the mean-square displacement is proportional to t, the

root-mean-square displacement is proportional to the square-root of t.
Note that n = t/7, so that:

(e(t) = (t/7)8* = (8%/7)t
m For convenience, we define a diffusion coefficient, D = §2 /27. This gives us

() = 2Dt




THE DIFFUSION COEFFICIENT




DRAG ON A SPHERE

The Equations for Fluid Dynamics
m Navier-Stokes Equations

ov
—Vp+nViv = Pot +p(v-V)v

® Reynolds number

m When R <1
—~Vp+nViv=0

m Linear relationships between
velocity and force at Low
Reynolds numbers

Force on a sphere with velocity V:

= 6mnaV




EINSTEIN-SMOLUCHOWSKI: D = RgT/f,

If &€ = % is the velocity of a particle, the average is given by equipartition:

m (&) = kgT

A particle moving with respect to the fluid at the speed &, experiences a viscous
resistance equal to —f-¢ according to Stokes’ formula.

The equation of motion in the x-direction, adding a random fluctuating force
owing to the surrounding molecules X(t) is:

d?x dx
mw = —fra + X(t)

X(t) is indifferently positive and negative, and its magnitude is such that it
maintains the agitation of the particle which the viscous resistance is constantly
dissipating.




EINSTEIN-SMOLUCHOWSKI: D = RgT/f, CONT'D

Multiplying the equation of motion by x and rewriting we have:

m d?x? f fr dx?
2de ™ T e T

Take the average of the equation of motion for a large number of particles:

m (m&?) = RgT
n

Xx) =0
w=e mdz kT ()
m Define <;t> =¥ 2 dt a
\
(
The general solution of Equation 1 is:
kgT
L L2 (2)
fr




EINSTEIN-SMOLUCHOWSKI: D = RgT/f, CONT'D

The second term in Equation 2 has a very small time constant (nanoseconds for
typical small particles) and so vanishes:

d(x®)  2kgT
a — f

Hence, for some period of time 7:

¢y =22 (@)




PROBABILITY DISTRIBUTIONS FOR
DIFFUSING PARTICLES




DIFFUSION FOLLOWS BINOMIAL STATISTICS

For a one-dimensional random walk, suppose that a particle steps to the right
with a probability p and to the left with a probability g.

n! R n—k (6)

P(k;n,p) = R — P

The displacement of the particles in n trials, x(n), is equal to the number of steps
to the right minus the number of steps to the left times the step length, §:

x(n) =[k—(n—R)]6 = (2k — n)é @)

Since we know the distribution of k, we know the distribution of x. The two
distributions have the same shape.




DIFFUSION FOLLOWS BINOMIAL STATISTICS CONT'D

r

The mean displacement of the particle is:

(x(n)) = (2 (k) —n)é

where (R) = np.

The mean-square displacement is
(2(n)) = {2k — n)é]*) = (4 (k*) — 4 (R) n + n?)5?

where (k?) = (np)? + npq

(9)




BINOMIAL TO GAUSSIAN STATISTICS

x=0

When n and np are both very large,
the binomial distribution, P(k; n, p)
is equivalent to:

1

ek /20?
Gy

P(R)dk =

Substitute x = (2k —n)g, dx = 25dk,
p=4q=1/2,t =n/r,and D =
8% /21,

1

_ 1 o—x*/ubt
P(x)dx = (D12 e dx

m P(x)dx is the probability of
finding a particle between x
and x + dx.

m The variance is o2 = 2Dt.

m The standard deviation is
ox = (2Dt)"/2,




MACROSCOPIC THEORY




FICK'S FIRST LAW

N(x) Nix +8)

1

x+6

1. At time t there are N(x) particles
at position x, N(x + §) particles at
X+ 0.

2. At time t + 7, half of each set will
have stepped left or right.

3. The net number crossing to the
right will be: —2 [N(x 4 8) — N(x)]

4. To obtain the net flux, divide by
the area normal to the x axis and by
T

e = =2 NG+ 8) = () /A~
(10)

\

Multiplying Eq.
rearrange:

10 by 62/6% and

pm [Mers) s

276 | AS AS

Define D = §2 /27 to be the diffusion
coefficient:

b = =D [C(x + 6) — C(x)]




FiICK'S FIRST LAW CONT'D

The flux due to a linear concentration gradient (C, — C;)/b. Net movement from
right to left occurs because there are more particles at the right.

m Fick’s First Law states that the net flux (at x and t) is proportional to the
slope of the concentration function (at x and t). The constant of
proportionality is D.

m If the particles are uniformly distributed, the slope is 0, i.e., 9C/9x = 0
and Jx = 0.

m If the slope is constant, i.e., if 9C/0x is constant, Jx is constant. This occurs
when C is a linear function of x.




FICK'S SECOND LAW

The number of particles per unit

] area A volume in the box must increase at

o the rate

1
Lbat) — [—— s — [C(t —+ T) = C(t)] =
T

= — 2 [+ 8) — I 00] 5

B = 5 Delx 4 8) — ()]

Fluxes through the faces of a box.
The area of each face is A. The faces
are normal to the x axis. In time
7, Jx(x)AT particles will enter from
the left and Jx(x + §)Ar particles will
leave from the right. The volume of
the box is Ag.




THE DIFFUSION EQUATION

Fick’s First Law in three dimensions
In three dimensions, we have Jx = —DAC/dx, Jy = —DAC/dy, and J, = —DAC/dz.
These are components of a flux vector:

J=-DVC (11)

Fick’s Second Law in three dimensions
In three dimensions, we have 9C/dt = — (9Jx/0x + dJy/dy + Jz/0z):

oc _
ot

-V-) (12)




DIFFUSION TO CAPTURE




THE SPHERICAL ADSORBER

A spherical adsorber of radius a
in an infinite medium containing
particles at concentration Co The
dashed arrows are lines of flux.




THE SPHERICAL ADSORBER, CONT'D

i
i
i C=Coatr=m=
i

A spherical adsorber of radius a
in an infinite medium containing
particles at concentration Co The
dashed arrows are lines of flux.

The flux is
a
jr = —DCOE

The net migration of molecules is
radially inward.

The particles are adsorbed by the
sphere at a rate equal to the area,
4ma? times the inward flux —J;(a):

| = 4wDaCo

This adsorption rate, I, is the
diffusion current.




PROBABILITY OF CAPTURE

m A spherical shell source, radius b,
between a spherical adsorber of radius a

m Particles released at r = b move inward
and are adsorbed at r = a at rate [;, or
move outward and are adsorbed at r = ¢
at rate lpyt.

m Their steady-state concentration rises
fromoatr=atotoCyatr=>bandthen
fallsagaintooatr =c.

and a spherical shell adsorber of radius c.




PROBABILITY OF CAPTURE, CONT'D

r

A boundary value problem

Steady-state diffusion equation
190 (ﬂ@) -0
r2 or or) —

Boundary conditions

C(r=a)=o0
C(r=b)=Cnm
C(r=c¢)=o0
The solution
1C'Z/b(1—‘:) ifa<r<b, %% ifa<r<b,
=3 ¢ ¢ =9 ben ¢
= ifb<r< — ifb<r<
c/b—1(r 1) ifb<r<c b1 ifb<r<c




PROBABILITY OF CAPTURE, CONT'D CONT'D

m The diffusion current from the spherical shell
source to the inner adsorber is

lin = 4wDCm (1)

e
1—a/b

m The diffusion current from the spherical shell
source to the outer adsorber is

lout = 4mwDCm (15)

_
c/b—1

m The probability that a particle released at r = b
will be adsorbed at r = a is the ratio:

lin a(c—b) (
= 16)
I,'n + lout b(C = G)

m In the limit ¢ — oo, the probability of being
adsorbed is a/b.




EINSTEIN RELATION




SEDIMENTATION OF SMALL PARTICLES

00 05 10 15 20 25 30
EfkaT

The density of particles suspended
in a fluid in a gravitational field is
given by the Boltzmann distribution:

p(Z) _ poe—mgz/hBT

because E = mgz

Each particle sediments at a velocity
given by the balance between
gravitational force (F = mg) and
viscous force (F = —f,V).

N




EINSTEIN RELATION

Upward flux due to diffusion is given Downward flux due to
by Fick’s First Law sedimentation is given by the
maz product of velocity and particle
9 _ by M9 poe FeT density
kT
_ mgz
sed _ _ny poe FaT
fr
p
At steady state, J97 4 jsed — o
g _ mgz g — Hence,
D x —= X poe keT X poe T =0 '
kT P 3 Po D— RgT
fr
D 1_,
kT  fr
\
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