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Microscopic Theory



Brownian motion

Lysozyme

Mass = m = 2.3× 10−20g
kBT = 4× 10−14g cm2/sec2

〈v2
x〉

1/2 = 1.3× 103cm/sec

1D random walk

Particles start at the origin
Step Size = δ
Step Interval = τ
Instantaneous velocity = δ/τ
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Brownian motion, the first moment

Each particle steps to the
right or to the left once every
τ seconds, moving at velocity
±vx a distance δ = ±vxτ .
the position of a particle after
the nth step di�ers from its
position after the (n− 1)th
step by ±δ:

xi(n) = xi(n− 1)± δ

The mean displacement does
not change:

〈x(n)〉 = 1
N

N∑
i=1

[xi(n− 1)± δ]

=
1
N

N∑
i=1

xi(n− 1)

= 〈x(n− 1)〉

If 〈x(0)〉 = 0, then 〈x(t)〉 = 0
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Brownian motion, the second moment

The probability of finding
particles at di�erent points at
t = 1, 4, and 16 sec.
Standard deviations increase
with the square root of time

Squared coordinate of each particle
changes with time:

x2
i (n) = x2

i (n− 1)± 2δxi(n− 1) + δ2

Mean squared coordinates of all
particles grows with time:

〈
x2(n)

〉
=

1
N

N∑
i=1

x2
i (n)

=
1
N

N∑
i=1

[
x2

i (n− 1)± 2δxi(n− 1) + δ2]
=
〈
x2(n− 1)

〉
+ δ2
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The diffusion coefficient

Since xi(0) = 0 for all particles i, 〈x2(0)〉 = 0. Thus, 〈x2(1)〉 = δ2,
〈x2(2)〉 = 2δ2, 〈x2(3)〉 = 3δ2, ..., and 〈x2(n)〉 = nδ2.
It follows that the mean-square displacement is proportional to t, the
root-mean-square displacement is proportional to the square-root of t.
Note that n = t/τ , so that:

〈
x2(t)

〉
= (t/τ)δ2 = (δ2/τ)t

For convenience, we define a di�usion coe�cient, D = δ2/2τ . This gives us〈
x2〉 = 2Dt
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The Diffusion Coefficient



Drag on a sphere

The Equations for Fluid Dynamics
Navier-Stokes Equations

−∇p+η∇2v = ρ
∂v
∂t

+ρ(v·∇)v

Reynolds number

< =
aVρ
η

When < � 1

−∇p + η∇2v = 0

Linear relationships between
velocity and force at Low
Reynolds numbers

Viscous flow around a sphere:

vr = −V cos θ

(
1− 3a

2r
+

a3

2r3

)

vθ = V sin θ

(
1− 3a

4r
−

a3

4r3

)
Force on a sphere with velocity V:

F = 6πηaV

5 22



Einstein-Smoluchowski: D = kBT/fr

If ξ = dx
dt is the velocity of a particle, the average is given by equipartition:

m
〈
ξ2〉 = kBT

A particle moving with respect to the fluid at the speed ξ, experiences a viscous
resistance equal to −frξ according to Stokes’ formula.

The equation of motion in the x-direction, adding a random fluctuating force
owing to the surrounding molecules X(t) is:

m d2x
dt2 = −fr

dx
dt

+ X(t)

X(t) is indi�erently positive and negative, and its magnitude is such that it
maintains the agitation of the particle which the viscous resistance is constantly
dissipating.
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Einstein-Smoluchowski: D = kBT/fr cont’d

Multiplying the equation of motion by x and rewriting we have:

m
2

d2x2

dt2 −mξ2 = −
fr

2
dx2

dt
+ Xx

Take the average of the equation of motion for a large number of particles:

〈mξ2〉 = kBT
〈Xx〉 = 0

Define d〈x2〉
dt = z

m
2

dz
dt

+
fr

2
z = kBT (1)

The general solution of Equation 1 is:

z =
2kBT

fr
+ Ce−

fr
m t (2)
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Einstein-Smoluchowski: D = kBT/fr cont’d

The second term in Equation 2 has a very small time constant (nanoseconds for
typical small particles) and so vanishes:

d 〈x2〉
dt

=
2kBT

fr
(3)

Hence, for some period of time τ :

〈
x2〉 = 2 kBT

fr
τ (4)

The di�usion coe�cient following Langevin’s method is thus:

D =
kBT
fr

(5)
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Probability distributions for
diffusing particles



Diffusion follows binomial statistics

For a one-dimensional random walk, suppose that a particle steps to the right
with a probability p and to the left with a probability q.

P(k; n, p) = n!
k!(n− k)!

pkqn−k (6)

The displacement of the particles in n trials, x(n), is equal to the number of steps
to the right minus the number of steps to the left times the step length, δ:

x(n) = [k− (n− k)] δ = (2k− n)δ (7)

Since we know the distribution of k, we know the distribution of x. The two
distributions have the same shape.
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Diffusion follows binomial statistics cont’d

The mean displacement of the particle is:

〈x(n)〉 = (2 〈k〉 − n)δ (8)

where 〈k〉 = np.

The mean-square displacement is〈
x2(n)

〉
=
〈
[2k− n)δ]2

〉
= (4

〈
k2〉− 4 〈k〉 n + n2)δ2 (9)

where 〈k2〉 = (np)2 + npq
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Binomial to Gaussian statistics

When n and np are both very large,
the binomial distribution, P(k; n, p)
is equivalent to:

P(k)dk =
1

(2πσ2)1/2 e−(k−µ)2/2σ2
dk

Substitute x = (2k−n)δ, dx = 2δdk,
p = q = 1/2, t = n/τ , and D =
δ2/2τ ,

P(x)dx =
1

(4πDt)1/2 e−x2/4Dtdx

P(x)dx is the probability of
finding a particle between x
and x + dx.
The variance is σ2

x = 2Dt.
The standard deviation is
σx = (2Dt)1/2.
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Macroscopic Theory



Fick’s First Law

1. At time t there are N(x) particles
at position x, N(x + δ) particles at
x + δ.
2. At time t + τ , half of each set will
have stepped left or right.
3. The net number crossing to the
right will be: − 1

2 [N(x + δ)− N(x)]

4. To obtain the net flux, divide by
the area normal to the x axis and by
τ :

Jx = −
1
2
[N(x + δ)− N(x)] /Aτ

(10)

Multiplying Eq. 10 by δ2/δ2 and
rearrange:

Jx = −
δ2

2τ
1
δ

[
N(x + δ)

Aδ
−

N(x)
Aδ

]
Define D = δ2/2τ to be the di�usion
coe�cient:

Jx = −D 1
δ
[C(x + δ)− C(x)]

In the limit δ → 0, we get
Fick’s First Law:

Jx = −D∂C
∂x
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Fick’s First Law cont’d

The flux due to a linear concentration gradient (C2 − C1)/b. Net movement from
right to left occurs because there are more particles at the right.

Fick’s First Law states that the net flux (at x and t) is proportional to the
slope of the concentration function (at x and t). The constant of
proportionality is D.
If the particles are uniformly distributed, the slope is 0, i.e., ∂C/∂x = 0
and Jx = 0.
If the slope is constant, i.e., if ∂C/∂x is constant, Jx is constant. This occurs
when C is a linear function of x.
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Fick’s Second Law

Fluxes through the faces of a box.
The area of each face is A. The faces
are normal to the x axis. In time
τ , Jx(x)Aτ particles will enter from
the left and Jx(x+δ)Aτ particles will
leave from the right. The volume of
the box is Aδ.

The number of particles per unit
volume in the box must increase at
the rate

1
τ
[C(t + τ)− C(t)] =

= −
1
τ
[Jx(x + δ)− Jx(x)]

Aτ
Aδ

= −
1
δ
[Jx(x + δ)− Jx(x)]

When τ → 0 and δ → 0, we
get Fick’s Second Law

∂C
∂t

= −
∂Jx
∂x
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The Diffusion Equation

Fick’s First Law in three dimensions
In three dimensions, we have Jx = −D∂C/∂x, Jy = −D∂C/∂y, and Jz = −D∂C/∂z.
These are components of a flux vector:

J = −D∇C (11)

Fick’s Second Law in three dimensions
In three dimensions, we have ∂C/∂t = − (∂Jx/∂x + ∂Jy/∂y + ∂Jz/∂z):

∂C
∂t

= −∇ · J (12)

The Di�usion Equation
Combining Eqs. 11 and 12 produces the three-dimensional di�usion equation

∂C
∂t

= D∇2C (13)
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Diffusion to Capture



The spherical adsorber

A spherical adsorber of radius a
in an infinite medium containing
particles at concentration C0 The
dashed arrows are lines of flux.

If the problem is spherically
symmetric, the flux is radial,

Jr = −D∂C/∂r

and

∂C
∂t

= D 1
r2
∂

∂r

(
r2 ∂C
∂r

)
The concentration at r = a is 0.
The concentration at r = ∞ is C0.
With these boundary conditions, the
di�usion equation has the solution:

C(r) = C0
(

1− a
r

)
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The spherical adsorber, cont’d

A spherical adsorber of radius a
in an infinite medium containing
particles at concentration C0 The
dashed arrows are lines of flux.

The flux is

Jr = −DC0
a
r2

The net migration of molecules is
radially inward.
The particles are adsorbed by the
sphere at a rate equal to the area,
4πa2 times the inward flux −Jr(a):

I = 4πDaC0

This adsorption rate, I, is the
di�usion current.
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Probability of capture

Suppose a particle is released near a spherical adsorber of radius a at a point
r = b > a? What is the probability that the particle will be adsorbed at r = a
rather than wander away for good?

A spherical shell source, radius b,
between a spherical adsorber of radius a
and a spherical shell adsorber of radius c.
Particles released at r = b move inward
and are adsorbed at r = a at rate Iin or
move outward and are adsorbed at r = c
at rate Iout.
Their steady-state concentration rises
from 0 at r = a to to Cm at r = b and then
falls again to 0 at r = c.
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Probability of capture, cont’d

A boundary value problem

Steady-state di�usion equation
1
r2
∂
∂r

(
r2 ∂C
∂r

)
= 0

Boundary conditions
C(r = a) = 0
C(r = b) = Cm
C(r = c) = 0

The solution

C(r) =


Cm

1− a/b

(
1− a

r

)
if a ≤ r ≤ b,

Cm

c/b− 1

( c
r
− 1
)

if b ≤ r ≤ c
Jr(r) =


−DCm

1− a/b
a
r2 if a ≤ r ≤ b,

DCm

c/b− 1
c
r2 if b ≤ r ≤ c
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Probability of capture, cont’d cont’d

The di�usion current from the spherical shell
source to the inner adsorber is

Iin = 4πDCm
a

1− a/b
(14)

The di�usion current from the spherical shell
source to the outer adsorber is

Iout = 4πDCm
c

c/b− 1
(15)

The probability that a particle released at r = b
will be adsorbed at r = a is the ratio:

Iin
Iin + Iout

=
a(c− b)
b(c− a)

(16)

In the limit c→∞, the probability of being
adsorbed is a/b.
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Einstein relation



Sedimentation of small particles

The density of particles suspended
in a fluid in a gravitational field is
given by the Boltzmann distribution:

ρ(z) = ρ0e−mgz/kBT

because E = mgz

Each particle sediments at a velocity
given by the balance between
gravitational force (F = mg) and
viscous force (F = −frV).
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Einstein relation

Upward flux due to di�usion is given
by Fick’s First Law

Jdi�
z = D× mg

kBT
× ρ0e−

mgz
kBT

Downward flux due to
sedimentation is given by the
product of velocity and particle
density

Jsed
z = −

mg
fr
× ρ0e−

mgz
kBT

At steady state, Jdi�
z + Jsed

z = 0:

D× mg
kBT
× ρ0e−

mgz
kBT −

mg
fr
× ρ0e−

mgz
kBT = 0

D
kBT
−

1
fr

= 0

Hence,
D = kBT

fr
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