Stimulus-Response Functions

BLock, SEGALL, AND BERG, 1982

Aravi Samuel
David Zimmerman
PHYSICS 141
Harvard University
Week 8

TEMPORAL COMPARISONS IN BACTERIAL CHEMOTAXIS

Plot of the displacement of a wild-type cell in a
homogeneous medium. Runs are exponentially distributed with a mean of about 1 sec .
Swimming speed is about
$2 \times 10^{-3} \mathrm{~cm} / \mathrm{s}$

- The cell is $10^{-4} \mathrm{~cm}$ in length.
- The diffusion coefficient of a small molecule is $D=10^{-5} \mathrm{~cm}^{2} \mathrm{~s}^{-1}$
- The time for a molecule to diffuse from one end of a cell to another is ≈ 1 millisecond.
- The cell outruns diffusion when $v t>\sqrt{D t}$, or roughly one second.
- For rotational diffusion about a single axis, $\left\langle\theta^{2}\right\rangle=2 D_{r} t$ where $D_{r}=k_{B} T / f_{r}$.
- The rotational frictional drag cofficient of a sphere or radius a is $f_{r}=8 \pi \eta a^{3}$
- In 1 sec , a $1 \mu \mathrm{~m}$ sphere diffuses about 30°.
- A cell cannot increase its integration time with longer runs because it "forgets" its direction

LINEAR RESPONSE THEORY

- Assume that the response at any given time represents a weighted sum of the values of the stimulus at earlier times

$$
r=r_{0}+\int_{0}^{\infty} d \tau h(\tau) s(t-\tau)
$$

- r_{0} is the background firing that may occur when $s=0$.
- $h(t)$ is a weighting factor that determines the sign and strength at which the value of the stimulus at time $t-\tau$ affects the firing rate at time t.
- Functionals map functions to other functions

$$
s(t) \mapsto r(t)
$$

- The Volterra expansion is the functional equivalent of the Taylor series expansion. This generates a power series approximations of functions:

$$
\begin{array}{r}
r(t)=r_{0}+\int d \tau D(\tau) s(t-\tau)+\int d \tau_{1} d \tau_{2} D_{2}\left(\tau_{1}, \tau_{2}\right) s\left(t-\tau_{1}\right) s\left(t-\tau_{2}\right)+ \\
\int d \tau_{1} d \tau_{2} d \tau_{3} D_{3}\left(\tau_{1}, \tau_{2}, \tau_{3}\right) s\left(t-\tau_{1}\right) s\left(t-\tau_{2}\right) s\left(t-\tau_{3}\right) \ldots
\end{array}
$$

- Norbert Wiener rearranged the Volterra expansion. h is called the "first Wiener kernel", the "linear filter", or just the "kernel".

The linear kernel

$$
r-r_{0}=\int_{0}^{\infty} d \tau h(\tau) s(t-\tau)
$$

An impulse stimulus

- In the limit that $\sigma \rightarrow 0$, the Gaussian function approaches a delta function:

$$
\int_{-\infty}^{\infty} f(\tau) \underbrace{s(\tau-t)}_{\approx \delta(\tau-t)} d \tau \approx f(t)
$$

- If the stimulus is sharply peaked at $t=0$, then the response to the stimulus reflects the value of the kernel at one point:

$$
\begin{aligned}
r-r_{0} & \propto \int_{0}^{\infty} d \tau h(\tau) \delta(t-\tau) \\
& \propto h(t)
\end{aligned}
$$

when $s(t) \propto \delta(t)$.

THE BACTERIAL IMPULSE RESPONSE

- Fit to sum of four exponentials:

$$
\begin{aligned}
h(t) & =A\left[\exp \left(-\frac{t}{a}\right)-\exp \left(-\frac{t}{b}\right)\right] \\
& +B\left[\exp \left(-\frac{t}{c}\right)-\exp \left(-\frac{t}{d}\right)\right]
\end{aligned}
$$

- Area of positive lobe equals area of negative lobe

$$
\int_{0}^{\infty} h(t) d t=0
$$

- The impulse response positively weights the most recent 1 second of any stimulus waveform and negatively weights the preceding 3 seconds.

$$
r(t) \approx s(t-1)-s(t-3)
$$

Thus, $r(t) \approx d s / d t$

Any periodic stimulus can be written as a Fourier series:

$$
s(t)=\sum_{n=-\infty}^{\infty} \hat{s}\left(\nu_{n}\right) e^{-2 \pi i(n / T) t}=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \left(\frac{2 \pi n t}{T}\right)+b_{n} \sin \left(\frac{2 \pi n t}{T}\right)\right]
$$

- Decompose a stimulus into sine and cosine waves
- compute the linear mapping of each sine and cosine wave to a response
- reassemble the total response from the original Fourier coefficients

Our linear filter roughly differentiates a sinusoidal stimulus...
... and behaves like a bandpass filter

CALCULATING THE KERNEL AS AN OPTIMIZATION

We want to estimate the linear kernel $h(t)$ that best predicts the system's responses to stimuli:

$$
r(t)-r_{0}=\int_{0}^{\infty} d \tau h(\tau) s(t-\tau)
$$

For a specific pair of response and stimulus waveforms, the best guess for the linear kernel minimizes the error or mean square deviation between the predicted response $r_{\text {est }}(t)$ and the true response:

$$
\begin{aligned}
E & =\frac{1}{T} \int_{0}^{T} d t\left[r_{\text {est }}(t)-r(t)\right]^{2} \\
& =\frac{1}{T} \int_{0}^{T} d t\left[\left(r_{0}+\int_{0}^{\infty} d \tau h(\tau) s(t-\tau)\right)-r(t)\right]^{2}
\end{aligned}
$$

Finding the function that minimizes an integral can involve the calculus of variations.

Approximate the integral as a sum in discrete time steps Δt :

$$
E=\frac{1}{N} \sum_{i=0}^{N}\left(r_{0}+\Delta t \sum_{k=0}^{\infty} h_{k} s_{i-k}-r_{i}\right)^{2}
$$

where $T=N \Delta t$ and

- $r_{n}=r(n \Delta t)$
- $h_{n}=h(n \Delta t)$
- $s_{n}=s(n \Delta t)$

Take the derivative with respect to the value of the kernel at the j th time step, and set it to zero:

$$
\frac{\partial E}{\partial h_{j}}=\frac{2}{N} \sum_{i=0}^{N}\left(r_{0}+\Delta t \sum_{k=0}^{\infty} h_{k} s_{i-k}-r_{i}\right) s_{i-j} \Delta t=0
$$

Finding the optimum kernel, cont'd

After rearrangement

$$
\begin{equation*}
\Delta t \sum_{k=0}^{\infty} h_{k}\left(\frac{1}{N} \sum_{i=0}^{N} s_{i-k} s_{i-j}\right)=\frac{1}{N} \sum_{i=0}^{N}\left(r_{i}-r_{0}\right) s_{i-j} \tag{1}
\end{equation*}
$$

Turn the sums back into integrals

- $i \Delta t \rightarrow t$
- $j \Delta t \rightarrow \tau$
- $k \Delta t \rightarrow \tau^{\prime}$
- and take limit $\Delta t \rightarrow 0$

$$
\int_{0}^{\infty} d \tau^{\prime} h\left(\tau^{\prime}\right)\left(\frac{1}{T} \int_{0}^{T} d t s\left(t-\tau^{\prime}\right) s(t-\tau)\right)=\frac{1}{T} \int_{0}^{T} d t\left(r(t)-r_{0}\right) s(t-\tau)
$$

FINDING THE OPTIMUM KERNEL, CONT'D CONT'D

Simplify using the definitions of correlation functions

- $R_{r s}=(r \star s)(-\tau)=\int_{0}^{T} d t r(t) s(t-\tau)$
- $R_{\mathrm{Ss}}=(s \star s)\left(\tau-\tau^{\prime}\right)=\int_{0}^{T} d t s(t) s\left(t+\tau-\tau^{\prime}\right)$

$$
\int_{-\infty}^{\infty} d \tau^{\prime} R_{\mathrm{ss}}\left(\tau-\tau^{\prime}\right) h\left(\tau^{\prime}\right)=R_{\mathrm{rs}}(-\tau)
$$

The Fourier Transform

$$
\begin{aligned}
\hat{f}(\nu) & =\int_{-\infty}^{+\infty} d t f(t) \exp -2 \pi i \nu t \\
f(t) & =\int_{-\infty}^{+\infty} d \omega \tilde{D}(\omega) \exp (2 \pi)
\end{aligned}
$$

White noise

- For white noise, $Q_{s s}(\tau)=\sigma^{2} \delta(\tau)$
- Hence, the kernel is proportional to the correlation between stimulus and response evaluated at $-\tau$:

$$
\begin{equation*}
D(\tau)=\frac{Q_{\mathrm{rs}}(-\tau)}{\sigma_{\mathrm{s}}^{2}} \tag{2}
\end{equation*}
$$

White Noise

White noise, CONT'D

- For white noise, $Q_{s s}(\tau)=\sigma^{2} \delta(\tau)$
- Hence, the kernel is proportional to the correlation between stimulus and response evaluated at $-\tau$:

$$
\begin{equation*}
D(\tau)=\frac{Q_{r s}(-\tau)}{\sigma_{s}^{2}} \tag{3}
\end{equation*}
$$

Response to white noise: $r(t)=\int_{0}^{\infty} D(\tau) s(t-\tau) d \tau$

$-Q_{r s}(-t)$.
$-D(t)$.

