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TEMPORAL COMPARISONS IN BACTERIAL CHEMOTAXIS




BACTERIAL CHEMOTAXIS

Awdos
Wild type.
2.5

26 runs.
Mean specd 21.2 yms

Plot of the displacement of a
wild-type cell in a
homogeneous medium. Runs
are exponentially distributed
with a mean of about 1 sec.
Swimming speed is about

2 x 1073 cm/s

o

o

For rotational diffusion about a single axis,
(6?) = 2Dt where Dy = RgT/f;.

The rotational frictional drag cofficient of a
sphere or radius a is fy = 87na3

In 1 sec, a 1 um sphere diffuses about 30°.
A cell cannot increase its integration time
with longer runs because it “forgets” its
direction







TEMPORAL COMPARISONS IN BACTERIAL CHEMOTAXIS
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LINEAR RESPONSE THEORY




PREDICTING TIME-VARYING RESPONSE FROM TIME-VARYING STIMULUS
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o Assume that the response at any given time represents a weighted sum of the
values of the stimulus at earlier times

F=ro+ /oo drh(r)s(t — )

o ro is the background firing that may occur when s = o.

o h(t) is a weighting factor that determines the sign and strength at which the
value of the stimulus at time t — 7 affects the firing rate at time t.







NON-LINEAR MAPPINGS







AN IMPULSE RESPONSE

An impulse stimulus
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THE BACTERIAL IMPULSE RESPONSE
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o Fit to sum of four exponentials:

h(t) = A [exp (_2) o (_%)}
(G ()

o Area of positive lobe equals area
of negative lobe

/oo h(t)dt =0

o The impulse response positively
weights the most recent 1 second
of any stimulus waveform and
negatively weights the preceding 3
seconds.

r(t) =~ s(t—1) —s(t—23)
Thus, r(t) ~ ds/dt







SQUARE WAVE STIMULUS, DIFFERENTIATING RESPONSE
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Kernel: h(t)

Stimulus waveform: s(t) Response waveform: r(t)

rt) = /0 = drh(r)s(t — 7)







TEMPORAL FILTERING

T ... and behaves like a bandpass filter

N\ /]
N\

STIMULUS

10?

| Stimulus (arbitrary units)

0 -5 0 5 10 15 20
Time

Our linear filter roughly

differentiates a sinusoidal 10(1 . 1;,u
stimulus og(frequency
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CALCULATING THE KERNEL AS AN OPTIMIZATION

For a specific pair of response and stimulus waveforms, the best guess for the
linear kernel minimizes the error or mean square deviation between the predicted
response rest(t) and the true response:

:
E— ; / dt [rest(t) — r(B)]?

- %/OT dt [(ro 4 /ooo d‘rh(T)S(t—T)> — r(t)]2

Finding the function that minimizes an integral can involve the calculus of
variations.







FINDING THE OPTIMUM KERNEL







FINDING THE OPTIMUM KERNEL, CONT'D

After rearrangement
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Turn the sums back into integrals
o iAt >t

o jAt — T

o RAt — 7/

o and take limit At — o

dr'h(r dts(t —7')s(t —7) ! dt(r(t) —ro)s(t— )
[T e (3 )1







FINDING THE OPTIMUM KERNEL, CONT'D CONT'D

Simplify using the definitions of correlation functions
o Ris = (rxs)(—7) = fo dtr(t)s(t — )
0 Rss = (sxS)(t—7') = fo dts(t)s(t+7—7')

/jo dr'Res(r — 7' )h(r') = Ris(—7)

The Fourier Transform

fv) = /_ o dtf(t) exp —2mivt

f(t) = /_ % dob(w) exp (27)







WHITE NOISE

o For white noise, Qss(7) = 025(7)

response evaluated at —7:

o Hence, the kernel is proportional to the correlation between stimulus and

Qrs( 7')
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WHITE NOISE, CONT'D
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Response to white noise: - Qus(—t).
r(t) = [ D(r)s(t — 7)dr —D(t).
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