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Temporal comparisons in bacterial chemotaxis



Bacterial chemotaxis

Plot of the displacement of a
wild-type cell in a
homogeneous medium. Runs
are exponentially distributed
with a mean of about 1 sec.
Swimming speed is about
2 × 10−3 cm/s

◦ The cell is 10−4 cm in length.
◦ The di�usion coe�cient of a small

molecule is D = 10−5cm2s−1

◦ The time for a molecule to di�use from one
end of a cell to another is ≈ 1 millisecond.
◦ The cell outruns di�usion when vt >

√
Dt,

or roughly one second.

◦ For rotational di�usion about a single axis,
〈θ2〉 = 2Drt where Dr = kBT/fr .
◦ The rotational frictional drag co�cient of a

sphere or radius a is fr = 8πηa3

◦ In 1 sec, a 1 µm sphere di�uses about 30◦.
◦ A cell cannot increase its integration time

with longer runs because it “forgets” its
direction
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Temporal comparisons in bacterial chemotaxis

◦ When a cell is exposed to a short
impulsive stimulus (pulses of
aspartate of small amplitude and
width), a biphasic response is
obtained.

◦ The CCW bias rises rapidly,
returns to baseline after one
second, falls below baseline, and
returns to baseline after another
3 seconds

◦ The impulse response is a
weighting function if the system
is linear, namely when changes in
behavioral response are
proportional to changes in
stimulus: ∆r(t) ∝ ∆s(t)
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Linear response theory



Predicting time-varying response from time-varying stimulus

s(t)
stimulus
waveform

∫∞
0 s(t− τ)h(τ)dτ

r(t)
response
waveform

Linear
Filter

◦ Assume that the response at any given time represents a weighted sum of the
values of the stimulus at earlier times

r = r0 +

∫ ∞
0

dτh(τ)s(t− τ)

◦ r0 is the background firing that may occur when s = 0.
◦ h(t) is a weighting factor that determines the sign and strength at which the

value of the stimulus at time t− τ a�ects the firing rate at time t.
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Non-linear mappings

◦ Functionals map functions to other functions

s(t) 7→ r(t)

◦ The Volterra expansion is the functional equivalent of the Taylor series
expansion. This generates a power series approximations of functions:

r(t) = r0 +

∫
dτD(τ)s(t− τ) +

∫
dτ1dτ2D2(τ1, τ2)s(t− τ1)s(t− τ2)+∫

dτ1dτ2dτ3D3(τ1, τ2, τ3)s(t− τ1)s(t− τ2)s(t− τ3)...

◦ Norbert Wiener rearranged the Volterra expansion. h is called the “first Wiener
kernel”, the “linear filter”, or just the “kernel”.
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An impulse response

The linear kernel

r − r0 =

∫ ∞
0

dτh(τ)s(t− τ)

An impulse stimulus
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s(t) =
1

(2πσ2)1/2 e
−t2/2σ2

◦ In the limit that σ → 0, the
Gaussian function approaches a
delta function:∫ ∞

−∞
f(τ) s(τ − t)︸ ︷︷ ︸

≈ δ(τ−t)

dτ ≈ f (t)

◦ If the stimulus is sharply peaked
at t = 0, then the response to the
stimulus reflects the value of the
kernel at one point:

r − r0 ∝
∫ ∞

0
dτ h(τ)δ(t− τ)

∝ h(t)

when s(t) ∝ δ(t).
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The bacterial impulse response

◦ Fit to sum of four exponentials:

h(t) = A
[

exp

(
−
t
a

)
− exp

(
−
t
b

)]
+ B

[
exp

(
−
t
c

)
− exp

(
−
t
d

)]

◦ Area of positive lobe equals area
of negative lobe∫ ∞

0
h(t)dt = 0

◦ The impulse response positively
weights the most recent 1 second
of any stimulus waveform and
negatively weights the preceding 3
seconds.

r(t) ≈ s(t− 1)− s(t− 3)

Thus, r(t) ≈ ds/dt
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Square wave stimulus, differentiating response

Stimulus waveform: s(t) Kernel: h(t)
Response waveform: r(t)

r(t) =

∫ ∞
0

dτh(τ)s(t− τ)
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Temporal filtering

Any periodic stimulus can be written as a Fourier series:

s(t) =
∞∑

n=−∞
ŝ(νn)e−2πi(n/T)t =

a0

2
+
∞∑
n=1

[
an cos

(
2πnt
T

)
+ bn sin

(
2πnt
T

)]

◦ Decompose a stimulus into sine and cosine waves
◦ compute the linear mapping of each sine and cosine wave to a response
◦ reassemble the total response from the original Fourier coe�cients

Our linear filter roughly
di�erentiates a sinusoidal

stimulus...

... and behaves like a bandpass filter
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Calculating the kernel as an optimization

We want to estimate the linear kernel h(t) that best predicts the system’s
responses to stimuli:

r(t)− r0 =

∫ ∞
0

dτh(τ)s(t− τ).

For a specific pair of response and stimulus waveforms, the best guess for the
linear kernel minimizes the error ormean square deviation between the predicted
response rest(t) and the true response:

E =
1
T

∫ T

0
dt [rest(t)− r(t)]2

=
1
T

∫ T

0
dt
[(

r0 +

∫ ∞
0

dτ h(τ)s(t− τ)

)
− r(t)

]2

Finding the function that minimizes an integral can involve the calculus of
variations.
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Finding the optimum kernel

Approximate the integral as a sum in discrete time steps ∆t:

E =
1
N

N∑
i=0

(
r0 + ∆t

∞∑
k=0

hksi−k − ri

)2

where T = N∆t and
◦ rn = r(n∆t)
◦ hn = h(n∆t)
◦ sn = s(n∆t)

Take the derivative with respect to the value of the kernel at the jth time step,
and set it to zero:

∂E
∂hj

=
2
N

N∑
i=0

(
r0 + ∆t

∞∑
k=0

hksi−k − ri

)
si−j∆t = 0
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Finding the optimum kernel, cont’d

After rearrangement

∆t
∞∑
k=0

hk

 1
N

N∑
i=0

si−ksi−j

 =
1
N

N∑
i=0

(ri − r0)si−j (1)

Turn the sums back into integrals
◦ i∆t→ t
◦ j∆t→ τ

◦ k∆t→ τ ′

◦ and take limit ∆t→ 0∫ ∞
0

dτ ′h(τ ′)

(
1
T

∫ T

0
dt s(t− τ ′)s(t− τ)

)
=

1
T

∫ T

0
dt (r(t)− r0)s(t− τ)
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Finding the optimum kernel, cont’d cont’d

Simplify using the definitions of correlation functions
◦ Rrs = (r ? s)(−τ) =

∫ T
0 dt r(t)s(t− τ)

◦ Rss = (s ? s)(τ − τ ′) =
∫ T

0 dt s(t)s(t + τ − τ ′)

∫ ∞
−∞

dτ ′Rss(τ − τ ′)h(τ ′) = Rrs(−τ)

The Fourier Transform

f̂ (ν) =

∫ +∞

−∞
dtf (t) exp−2πiνt

f(t) =

∫ +∞

−∞
dωD̃(ω) exp (2π)
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White noise

◦ For white noise, Qss(τ) = σ2δ(τ)

◦ Hence, the kernel is proportional to the correlation between stimulus and
response evaluated at −τ :

D(τ) =
Qrs(−τ)

σ2
s

(2)

White Noise Qss
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White noise, cont’d

◦ For white noise, Qss(τ) = σ2δ(τ)

◦ Hence, the kernel is proportional to the correlation between stimulus and
response evaluated at −τ :

D(τ) =
Qrs(−τ)

σ2
s

(3)

Response to white noise:
r(t) =

∫∞
0 D(τ)s(t− τ)dτ

Qrs(−t).
D(t).
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