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1. Metric spaces

The goal of topology is to study those properties of geometric objects that are invariant
under continuous deformation. This may sound kind of vague, but we’ll see how to make this
more precise as we go on. The definition of a topological space is one of the great achieve-
ments of modern mathematics; it encodes exactly the information we need about a space in
order to study those of its properties that are invariant under continuous deformation, and
it does so with remarkable efficiency. But the definition seemingly comes out of nowhere,
unless one first develops some intuition. Therefore, we will start with a much more intuitive
definition, that of a metric space, and see how it leads us to the notion of topological space.

A classical way to apprehend the geometry of any object is to consider distances between
points. Considering distances between points of a space (elements of a set), and the axioms
that should be satisfied, one arrives at the following definition:

Definition 1.1. A metric space (X, d) is a set X, together with a function d : X×X → R
≥0,

called the distance function, satisfying the conditions

(1) for any two points p, q ∈ X, d(p, q) = 0 if and only if p = q;
(2) for any two points p, q ∈ X, d(p, q) = d(q, p); and
(3) (the triangle inequality) for any three points p, q, r ∈ X,

d(p, r) ≤ d(p, q) + d(q, r).

Example 1.2. X = R
n, with the usual distance function

d
(

(x1, . . . , xn), (y1, . . . , yn)
)

=
(

∑

(yi − xi)
2
)1/2

Similarly, if X ⊂ R
n is any subset, we can take the distance function d : X×X → R

≥0 on
X to be the restriction to X×X of the standard distance function d on R

n. (More generally,
if X is any metric space and Y ⊂ X any subset, Y inherits the structure of metric space
from X; this is called the induced metric.)

Note that as an alternative to the euclidean distance function of Example 1.2, we could
also take

d∞
(

(x1, . . . , xn), (y1, . . . , yn)
)

= max{|yi − xi|}

or

d1
(

(x1, . . . , xn), (y1, . . . , yn)
)

=
∑

|yi − xi|,

called the square metric and the diamond metric respectively.

Exercise 1.3. Verify that the functions e and f satisfy the conditions of Definition 1.1; that
is, (Rn, d∞) and (Rn, d1) are metric spaces.
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2. Continuity and limits in metric spaces

Let X and Y be metric spaces with distance functions dX and dY , and let f : X → Y be
any map. We say that f is continuous at a point p ∈ X if points close to p are mapped to
points close to f(p); more precisely,

Definition 2.1. Given metric spaces (X, dX) and (Y, dY ), f : X → Y is continuous at a
point p ∈ X if

∀ε > 0, ∃ δ > 0 s.t. ∀q ∈ X, dX(q, p) < δ =⇒ dY (f(q), f(p)) < ǫ.

We say that f : X → Y is continuous if it is continuous at every point of X.

Definition 2.2. Let X be a metric space with distance d. We say that an infinite sequence
of points p1, p2, p3, . . . ∈ X has limit p ∈ X if

∀ε > 0, ∃N ∈ N s.t. ∀n > N, d(pn, p) < ε.

This expresses the informal idea that the points pn get and stay arbitrarily close to p.

There is a related notion of a Cauchy sequence of points in a metric space: this is a
sequence p1, p2, p3, . . . ∈ X whose members get and stay arbitrarily close to each other.
More precisely:

Definition 2.3. A sequence p1, p2, p3, . . . ∈ X is a Cauchy sequence if

∀ε > 0, ∃N ∈ N s.t. ∀m,n > N, d(pm, pn) < ε.

Exercise 2.4.

(1) Use the triangle inequality to show that a sequence p1, p2, p3, . . . of points in a metric
space X can have at most one limit.

(2) Show that any sequence with a limit is Cauchy.
(3) Show by example that the converse is not true: a Cauchy sequence in a metric space

need not have a limit.
(4) We say a metric space is complete if every Cauchy sequence has a limit. Find an

example of a complete metric space.

3. Open sets

We now begin the process of extracting just those properties of a metric space that are
invariant under continuous deformation. The crucial notion is that of an open set:

Definition 3.1. Let X be a metric space with distance d. We say that a subset U ⊂ X is
open if U contains all points of X sufficiently close to any given point of U : precisely,

∀p ∈ U ∃ǫ > 0 : ∀q ∈ X, d(q, p) < ǫ =⇒ q ∈ U.

There is a more intuitive way to say this, using the notion of an open ball. For a point
p in a metric space X and any positive real number r, we define the open ball of radius r

around p to be the set
Br(p) = {q ∈ X : d(q, p) < r}.
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In these terms, we can say a subset U ⊂ X is open if it contains an open ball around each
of its points.

Definition 3.2. A subset Z ⊂ X is closed if the complement U = X \ Z is open.

Beware: a subset of X can be both open and closed, or (more commonly) neither open
nor closed.

Exercise 3.3.

(1) Use the triangle inequality to show that an open ball is indeed open.
(2) Show that a finite intersection of open subsets in a metric space is open; and that an

arbitrary union of open subsets is open.
(3) Deduce from part (2) that an arbitrary intersection of closed subsets in a metric space

is closed, and a finite union of closed subsets is closed.
(4) Show by example that an arbitrary intersection of open subsets need not be open.

The point of all this is that we can characterize continuous maps between metric spaces
without explicitly invoking the metric: we have the key

Theorem 3.4. Let X and Y be metric spaces. If f : X → Y is any map, then f is

continuous if and only if the preimage f−1(U) of every open set U ⊂ Y is open in X.

Proof. First, suppose that f is continuous. The definition says that for any ǫ > 0 and
any point p ∈ X, the preimage of the ball Bǫ(f(p)) contains a ball Bδ(p). To show that
the preimages under f of open sets are open, suppose that U ⊂ Y is open. For any point
p ∈ f−1(U), U will contain a ball Bǫ(f(p)) for some ǫ > 0, so f−1(U) contains an open ball
around p; thus f−1(U) is open.

The other direction is similar: if f is not continuous at p ∈ X, by definition there is an
ǫ > 0 such that the preimage f−1(Bǫ(f(p))) does not contain any open ball around p; thus
f−1(Bǫ(f(p))) is not open. �

There is an analogous characterization of limits in terms of open sets:

Exercise 3.5. Let X be a metric space. Show that a sequence p1, p2, p3, . . . ∈ X of points in
X has limit p ∈ X if and only if every open set U ⊂ X containing p contains all but finitely
many of the points pn.

4. Topological spaces

The point of all this is that notions like continuity, limits, etc. depend only on which sets
are open, and not on a particular metric. If we want to forget the metric and just remember
which sets are open, we are finally led to the definition of topological space:

Definition 4.1. A topological space is a set X, with a collection T of subsets of X called
open sets, such that

(1) The intersection of finitely many open sets is open;
(2) The union of an arbitrary collection of open sets is open; and
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(3) ∅ and X ∈ T

We can then define continuous maps between topological spaces as suggested by Theo-
rem 3.4:

Definition 4.2. Let X and Y be topological spaces. A map f : X → Y is said to be
continuous if the preimage of any open subset of Y is open in X.

Limits can likewise be defined along the lines suggested in Exercise 3.5:

Definition 4.3. Let X be a topological space, and p1, p2, p3, . . . ∈ X a sequence of points of
X. We say that a point p ∈ X is a limit of the sequence if every open subset of X containing
p contains all but finitely many of the points pi.

Note that there are some aspects of a metric space that are not so readily ported over
to the setting of topological spaces: it’s hard to see, for example, what the analogue of a
Cauchy sequence would be in a topological space. And some things that are true for metric
spaces may not hold for topological spaces in general: for example, the statement that a
sequence has at most one limit fails for topological spaces in general.

Note also that different metrics on a set X can induce the same topology:

Exercise 4.4. Show that the metrics d and d∞ on R
n defined in the first section induce the

same topology on R
n: that is, a subset U ⊂ R

n is open in one metric if and only if it is open
in the other.

An important point: the definition of a topological space does a beautiful job of capturing
the essential topological structure of a metric space, while stripping away extraneous infor-
mation like the actual metric. But at the same time, it lets in the door a lot of spaces that
are not in any reasonable sense “geometric.” The standard first example of this is the space
X consisting of two points p and q, with open sets ∅, {p} and {p, q}. Roughly speaking,
this means that “one point is infinitely close to the other, but not vice versa,” which is not
something that would normally arise in a geometric setting. (And yet, one does encounter
strange topological spaces such as this one, for example, in algebraic geometry.)

Accordingly, one of our goals will be to understand what sorts of conditions we can impose
on a topological space to ensure that it behaves like the sort of spaces that arise in geometry,
and to which we want to apply the methods of topology. Again, an example: the Hausdorff

condition on a topological space X says that for any two distinct points p, q ∈ X there are
disjoint open sets U and V containing p and q. This is clearly true in any metric space – if
d(p, q) = r, take U = Br/2(p) and V = Br/2(q) – but fails for arbitrary topological spaces
(like the two-point space above).


