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If social learning is more efficient than independent individual exploration, animals should learn
vital cultural skills exclusively, and routine skills faster, through social learning, provided they actu-
ally use social learning preferentially. Animals with opportunities for social learning indeed do so.
Moreover, more frequent opportunities for social learning should boost an individual’s repertoire
of learned skills. This prediction is confirmed by comparisons among wild great ape populations
and by social deprivation and enculturation experiments. These findings shaped the cultural intelli-
gence hypothesis, which complements the traditional benefit hypotheses for the evolution of
intelligence by specifying the conditions in which these benefits can be reaped. The evolutionary
version of the hypothesis argues that species with frequent opportunities for social learning
should more readily respond to selection for a greater number of learned skills. Because improved
social learning also improves asocial learning, the hypothesis predicts a positive interspecific corre-
lation between social-learning performance and individual learning ability. Variation among
primates supports this prediction. The hypothesis also predicts that more heavily cultural species
should be more intelligent. Preliminary tests involving birds and mammals support this prediction
too. The cultural intelligence hypothesis can also account for the unusual cognitive abilities of
humans, as well as our unique mechanisms of skill transfer.
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1. INTRODUCTION
Intelligence is the ability to respond flexibly to new or
complex situations, to learn and to innovate [1]. This
ability is anchored in genetic predispositions towards
faster reaction times, greater working memory, inhibi-
tory control and greater response to novelty [2].
However, intelligence poses an evolutionary puzzle.
What is heritable, and therefore malleable by natural
selection, is the ability to invent effective solutions.
But what contributes to fitness is not the ability to
learn per se but rather these innovative solutions: the
learned skills. Rare, serendipitous inventions may
make major contributions to fitness, yet they are not
heritable because their acquisition depends on many
additional factors, such as the constellation of environ-
mental conditions and sheer serendipity. Thus,
selection to favour increased cognitive abilities
beyond mere conditioning, towards innovative sol-
utions to problems, i.e. true intelligence, must face a
high threshold.

Nonetheless, many species are intelligent. Here, we
argue this is largely because socially mediated learning
(henceforth: social learning, for short) by offspring or
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other relatives makes inventions heritable, thus lower-
ing the threshold for selection on intelligence.
Opportunities for social learning allow an individual
to acquire many learned skills during development
that it could not acquire on its own. If the social
system is such that such opportunities are frequent
over many generations, selection may favour increased
individual learning ability, i.e. intelligence, but it
should certainly favour improved social-learning abil-
ity, which, as an inevitable by-product, will improve
intelligence.

The ‘Vygotskian intelligence hypothesis’ [3] con-
siders cultural effects on cognitive development, and
assumes them to be unique to humans [4,5]. However,
several scholars have highlighted the presence of simi-
lar developmental effects in apes (e.g. [6–8]). Allan
Wilson [9] went further and suggested that these cul-
tural effects could also have affected the evolution of
intelligence in our lineage and others (see also
[10,11]), an idea called the cultural intelligence
hypothesis by Whiten & van Schaik [12]. This hypoth-
esis builds on a long tradition suggesting that social
learning, and thus culture, may affect evolution
(e.g. [13]), and can also be linked to Reader & Laland’s
[14] hypothesis that general behavioural flexibility,
which includes social learning, may have favoured
the evolution of intelligence. Here we examine both
the developmental and evolutionary aspects of the
cultural intelligence hypothesis.
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Figure 1. The sources of an individual’s set of learned skills

as acquired during development: (1) the skills learned
through social learning from the population’s pool of learned
skills, and (2) the skills acquired through innovation from its
own asocial (individual)-learning ability. The dashed arrow 3
reflects the effect of experience on asocial-learning ability.
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This hypothesis was motivated by observations on
great ape cultures. Maturing chimpanzees and orang-
utans would not have acquired these cultural variants,
which are complex learned skills, on their own, if it
were not for social learning [15–18]. This is evident
for tool-assisted nut cracking in chimpanzees [19] or
seed extraction from Neesia fruits in orang-utans,
which improves fitness by bringing unusual energetic
benefits but which is rarely invented and hence
patchily distributed [20]. However, numerous less
spectacular examples [21,22] may also contribute to
fitness and may also be difficult to invent, as suggested
by their patchy geographical distribution [23]. Their
acquisition should, therefore, also be dependent on
social learning. Comparisons across populations indi-
cated that the set of learned (cultural) skills, in
particular difficult tool-using skills, is larger where
opportunities for social learning are more abundant
[11,24]. But the importance of social learning may
extend beyond the acquisition of cultural skills and
also include non-culturally varying (i.e. universal),
learned skills [18,25]. Indeed, there is little exploration
and learning by maturing apes in nature that is not
socially guided, suggesting they prefer social learning
when possible [18]. All this suggests that they acquire
their repertoire of learned skills less through individual
exploration and invention (arrow labelled 1 in figure 1)
than through social learning (arrow 2; see also [26]).
Similar processes may occur in capuchin monkeys
[27,28], and possibly to some extent in other non-
primate lineages (cf. [29]). After having reviewed this
developmental evidence in more detail, we will exam-
ine the evolutionary consequences of this reliance on
social inputs for skill acquisition.
2. THE CULTURAL INTELLIGENCE HYPOTHESIS
Social learning can be defined as learning influenced
by observation of, or interaction with, another
animal [30]. It thus encompasses two rather different
processes. Learning through social interaction, includ-
ing social play and agonistic interactions, generally
involves the acquisition of social skills. Learning via
social information is essential for the acquisition of
non-social skills, although it may also be used in the
acquisition of social skills (e.g. through eavesdropping:
[31]). This second kind of social learning can take
different forms of varying complexity, ranging from
mechanisms as simple as local or stimulus enhance-
ment to complex forms of imitation (e.g. summarized
in [32]). It must be pointed out, however, that most
social learning in animals is not direct copying.
Indeed, along with a variable involvement of dedicated
cognitive mechanisms [33–35], social learning almost
invariably includes an important element of individual
evaluation [36], and may indeed largely rely on existing
asocial-learning mechanisms [37].

Social learning is not necessarily adaptive [38].
However, whereas horizontal social learning (i.e.
from peers) to acquire perishable information about
the state of the biotic or social environment can some-
times be maladaptive, vertical and oblique social
learning (i.e. from parents or others in that generation)
of cognitively demanding skills by naive immatures is
Phil. Trans. R. Soc. B (2011)
most likely to be adaptive (cf. [39]). Throughout, we
will focus on these adaptive forms.

The cultural intelligence hypothesis assumes
that social learning is more efficient than individual,
or asocial, exploration and learning, and that individ-
uals in practice tend to rely on social learning to
acquire skills, i.e. prefer it to asocial learning. We
expect higher efficiency for social learning because
asocial learners face the fundamental problem of iden-
tifying which environmental stimuli they should attend
to, forcing them to explore in a less directed fashion.
Thus, the signal-to-noise (relevant versus irrelevant)
ratio of stimuli encountered by immatures is higher
for those relying on social learning, making it more
likely that they acquire a skill through either socially
directed trial-and-error learning (enhancement
effects) or observational forms of social learning (i.e.
copying of actions, goals or results). Asocial learners,
on the other hand, have a far lower signal-to-noise
ratio since social inputs do not help them to filter
out irrelevant stimuli (cf. [40]). Thus, at constant
cognitive abilities, they will on average be less likely
or take longer to find a solution to a problem than
social learners.

A test of the assumption that social learning is more
efficient requires that social learning be operationa-
lized. A commonly used definition is that subjects
acquire particular behaviours or skills faster when
exposed to skilled role models than they do in a control
situation, in which they can independently explore and
eventually learn the skill individually. This assumption
has been validated in many taxa, and especially in pri-
mates [34], although success rates vary across lineages
[41], as do known mechanisms [35]. It is also sup-
ported by experiments in humans [39]. Thus, social
learning acts to speed up the acquisition of behaviour
patterns that are universal in the species concerned
and thus probably have an innate component [42–44],
such as nest building in great apes. It also improves
their adult deployment, as shown for nest building in
chimpanzees [45,46]. However, social learning also
allows acquisition of novel behaviours (innovations)
that the animals would not learn at all otherwise. In
many experiments, the control animals fail to find
the solution (e.g. [47,48]), a finding supported by
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the patchy geographical incidence of learned skills in
wild populations [21,22].

A second critical assumption is that animals able to
learn socially do so preferentially rather than rely on
individual exploration to acquire skills (as humans
should do: [39]). Field observations show that infants
in several primate species show relatively little inde-
pendent exploration, but strongly increase selective
exploration of potential food items after mothers fed
on them [25], to the point that among orang-utans
their diets have become identical with those of their
mothers by weaning [18], which cannot be attributed
to genetic predispositions, because mothers from the
same population differ with regard to their feeding
repertoires from each other. Vertical inheritance of
foraging specializations in dolphins suggests the same
process [49]. Experiments similarly show that infants
of some species avoid novel foods until their mothers
or others have tried them (e.g. Daubentonia: [44]).
Rats likewise avoid foods not eaten by others, focusing
instead on those eaten by others [50].

Interspecific cross-fostering experiments are the
most powerful tool to demonstrate a preference for
social learning, if they produce a bias towards the be-
haviour of the adopting species. Although most
examples in rodents and birds refer to sexual imprint-
ing [51], a few experiments have examined the effects
of more long-term exposure to heterospecific parents.
They found powerful effects on diet, foraging, move-
ment and even styles of social behaviour in birds
[52–54] and mammals [55,56], suggesting that
social learning (through social information and social
interaction) prevails over asocial learning in these
domains. Enculturation studies, reviewed below,
show equally powerful effects. Overall, these findings
support the assumption that especially the young and
naive of various species actually show a preference
for social learning over individual exploration, although
the exceptions (e.g. [57]) might provide a useful testing
ground for the cultural intelligence hypothesis.
3. TESTING THE DEVELOPMENTAL PREDICTION
The main prediction of the developmental version of
the cultural intelligence hypothesis is that the
number of learned skills acquired by a maturing
individual depends on its opportunities for social
learning during this period. While we already noted
that observational data from wild apes support this
prediction, we now discuss experiments that artificially
reduce access to role models for social learning (depri-
vation) or provide better role models with larger skill
repertoires (enculturation).

(a) Deprivation effects

For several decades following World War II, many
deprivation experiments were conducted in which
infant monkeys or apes were reared without access to
their mothers or other adult conspecifics. Monkeys
and apes reared in partial social deprivation (i.e. with
peers only) tend to have near-normal sexual and
social competence, which can largely be learned
through social interaction, but clearly reduced
maternal competence [58–61]. For physical skills,
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learned through social information, the effects are
stronger. Infant chimpanzees reared without adult
role models show much reduced competence in
many physical skills, such as nest building [45,46]
and tool use [62], or fail to develop them altogether,
despite showing otherwise normal behaviour. Thus,
primates, especially apes, deprived of adult role
models acquire a smaller set of learned skills (see
electronic supplementary material for more details).
(b) Enculturation studies

Enculturation is interspecific cross-fostering, in which
an animal is reared by humans and treated more or less
like a human child, thus exposed to human artefacts
and rules through joint attention and active teaching.
Enculturation thus provides increased opportunities
for socially guided learning, including in domains
not present in normal conspecific individuals (e.g.
complex artefacts, language). Usually, the cross-
fostered individuals were apes, but where monkeys
were studied, the results were in the same direction
(e.g. [63]). Enculturation brings about more rapid be-
havioural and motor development [8] and an increased
number of learned skills (reviewed in e.g. [64–66]),
including more interest in objects and more sophisti-
cated object manipulation [66,67] and more skilful
tool use [63,68]. Perhaps most strikingly, some great
apes developed unusually elaborate comprehension
and some use of human language systems despite the
complete absence of such symbolic signalling in the
wild [6]. Further details are provided in the electronic
supplementary material. Thus, enculturation studies
not only show the strong preference for socially
guided learning and interest in role models’ actions
of infant primates, but also the remarkable potential
for apes to acquire learned skills well outside the
range of acquisition during normal development if
appropriate role models are available.
(c) A stronger version of cultural intelligence

A stronger version of the cultural intelligence hypoth-
esis is that social learning not merely increases the set
of learned skills, as examined so far, but also affects the
asocial-learning ability (intelligence) itself. Where an
individual has a greater set of learned skills, it may
become a better asocial learner through the experience
it has gathered in learning the other skills, either
because affordance learning has increased its scope
of possible innovations or because learning has pro-
duced transfer of experience and abilities to new
situations. This experience effect is ubiquitous in
humans [69] and has long been known for captive
primates [70], but also explains why wild primates
generally show poor performance on cognitive tasks
requiring familiarity with human artefacts or tasks
[16,71,72]. Thus, where the population has a large
pool of skills and social learning is possible, this
should allow the individual not only to increase its
set of learned skills, but also, through experience, to
improve its asocial-learning ability (arrow labelled 3
in figure 1).

The critical prediction of this stronger version is
that the frequency of opportunities for social learning
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Figure 2. The evolution of intelligence through cultural

feedback. Selection on an increased set of learned skills is
achieved by improved social learning. Owing to the high
cognitive overlap, social learning improves the asocial
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during development affects asocial-learning ability, i.e.
intelligence. Indeed, social deprivation reduces learn-
ing ability in rodents [73] and probably primates
[74,75]. On the other hand, enculturation effects
improve it [67,76,77]. For instance, only enculturated
individuals master delayed imitation. However,
because the exact nature of enculturation effects
remains unclear (see detailed discussion in the elec-
tronic supplementary material) and systematic
cognitive tests of primates deprived only of adult role
models have not yet been conducted, this conclusion
is preliminary. If further, systematic tests support this
prediction, the evolutionary effects envisaged by the
cultural intelligence hypotheses, reviewed below, are
even stronger.
(individual)-learning ability (i.e. intelligence; shown by
arrow 1). More learned skills also improve the latter through

stronger experience effects (arrow 2).

4. THE EVOLUTIONARY VERSION OF THE
CULTURAL INTELLIGENCE HYPOTHESIS
The observations and experiments reviewed above
show that individuals with more opportunities for
social learning systematically acquire a larger set of
learned skills and also become better asocial learners.
This effect of social learning may have two opposing
evolutionary consequences. If individuals in lineages
with systematically increased opportunities for social
learning can more efficiently acquire the minimum
number of skills to survive and reproduce, but derive
no fitness benefit from enlarging the set of learned
skills, then selection would favour smaller brains in
these lineages than in less sociable ones. However,
given that relative brain size has consistently increased
over evolutionary time [78], the opposite outcome is
more likely. Thus, if the number and complexity of
skills acquired through social learning positively
impact survival and/or reproduction, lineages with
more opportunities for social learning can more readily
respond to selection for an increased set of learned
skills than lineages with limited contact between the
generations or tolerant independent animals.

The increased set of learned skills is actually achieved
through selection on improved social-learning ability.
However, this can lead to improved asocial-learning
ability, i.e. intelligence, in two distinct ways (figure 2).
First, better social-learning performance automatically
improves asocial-learning processes [26], owing to the
high overlap of the cognitive processes involved in
social and asocial learning [37]. For instance, at the
simplest level, selection on enhancement learning
favours the causal understanding of agent–object
relations. All forms of observational social learning
benefit from increased inhibitory control, attention
and memory—components of executive functions that
enhance individual learning [2]. Emulation critically
requires goal understanding; production imitation
requires inhibitory control and working memory.
In the extreme case, social-learning abilities may
merely function as input channels for the asocial-
learning mechanisms [37]. Thus, selection for
more effective social learning indirectly or directly
improves asocial-learning abilities. A second way in
which improved social-learning ability can improve
asocial-learning ability is direct. It arises whenever the
experience effect operates and the increased set of
Phil. Trans. R. Soc. B (2011)
learned skills leads to a direct improvement of the
asocial-learning ability.

In lineages with opportunities for social learning, a
positive coevolutionary process between social-learning
ability and brain size may ensue, until increases in brain
size no longer provide sufficient additional pay-off in
survival or reproduction in the current environment.
Different lineages are expected to go different distances
in this eco-evolutionary process, with the position of the
equilibrium depending on where the fitness costs of
continued investment in neural structures begin to bal-
ance the benefits.

The cultural intelligence hypothesis therefore makes
two evolutionary predictions, which can be tested
comparatively. The first prediction is that social-learning
abilities and asocial-learning abilities show correlated
evolution. The second is that intelligence and fre-
quency of opportunities for social learning show
correlated evolution.
(a) Coevolution of social and asocial learning

The prediction of a positive interspecific relationship
between the abilities for social and asocial learning is
a strong one because under other hypotheses for the
evolution of intelligence (see §5), greater individual
intelligence is not necessarily accompanied by greater
ability for social learning.

Reader & Laland [14] and Reader et al. [79] pro-
vided comparative support for this prediction by
showing that among primates, reports of social learn-
ing, regardless of mechanism, show a significant
positive correlation with reports of innovation, and
both show significant positive correlations with the
executive brain ratio, i.e. (neocortex þ striatum/brain-
stem). Similarly, Lefebvre [80] reviewed evidence for a
positive interspecific correlation between performance
in social learning and individual learning experiments
among birds.

A more detailed test compares the asocial-learning
ability with the cognitive complexity of social learning
across a set of taxa. We compared four primate grades:
prosimians (lemurs, galagos and lorises, and in prin-
ciple tarsiers), monkeys (i.e. both Old and New
World monkeys), great apes (i.e. leaving out the
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gibbons and humans) and humans. While these grades
do not correspond to actual clades, they are fairly
homogeneous with respect to lifestyle and relative
brain size (e.g. [81]). The summary of table S1 in
the electronic supplementary material shows that the
performance in both social and asocial learning
increases systematically from prosimians, to monkeys,
to great apes and finally humans. It is generally
assumed that observational forms of social learning,
including all forms of emulation and imitation, involve
more complex cognitive mechanisms than the non-
observational forms, such as facilitation and enhance-
ment. There is no evidence for observational learning
in prosimians [34]. Almost all the observational
forms of social learning documented so far among
monkeys refer to contextual imitation [33] or imitation
of species-typical actions [11], whereas among great
apes, we see evidence for copying of novel actions,
complex action sequences (also production imitation)
or deferred imitation (see also electronic supplemen-
tary material). Subiaul [35] argues that this
distinction is supported by neurobiological differences
between these latter two lineages, with production
imitation requiring neural adaptations that mediate
the planning and coordination of gross and fine motor
patterns. In support, human children can copy
known motor acts before they can copy novel actions
or action sequences [82].
(b) Opportunities for social learning

and brain size

The second prediction is that selection would be most
likely to favour the evolution of improved domain-
general cognitive abilities where opportunities for social
learning are present, and should do so more when such
opportunities are systematically more abundant. This
is a ceteris paribus prediction. Thus, not all lineages
satisfying the condition need to have evolved greater
intelligence, but conversely all highly intelligent species
should have excellent opportunities for social learning.
In short, prediction 2 is that the most intelligent species
should all be highly cultural species.

A proper test of the second prediction requires
knowledge of the distribution and extent of culture
among taxa in the wild. This information is woefully
incomplete, forcing us to use indirect estimates of
the amount of social learning in the wild as a first
approach to testing this prediction. Opportunities for
social learning correlate with a number of non-
exclusive variables that can therefore be used as
proxies for it: presence of stable social units containing
overlapping generations, a long period of close associ-
ation with one or more parents, the presence of
cooperative breeding and extent of social tolerance in
social units [24,83]. Because the effect of social toler-
ance outweighs that of group size, in both theoretical
[26] and empirical studies [14], group size is not a rel-
evant variable, although group living per se probably is.

Intelligence must likewise be assayed indirectly,
using neuro-anatomical measures, although theoreti-
cally there is no obvious best measure [84]. Results
obtained with different measures are often the same
(e.g. [85]) or similar (e.g. [14]), but not always [86].
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As yet, no systematic analyses have been done for
mammals, but among birds, several patterns are con-
sistent with the cultural intelligence hypothesis. First,
young of altricial species generally have far longer
and more intensive contact with parents than precocial
ones, and thus more opportunities for social learning.
Accordingly, altricial birds have far larger average rela-
tive brain size than precocial ones [87]. Second,
among altricial birds, the duration of post-fledging
parental care, a period during which various skills
improve [88], is positively correlated with relative
brain size [89], as predicted. Third, among bower-
birds, learning of bower building has been argued
to be socially mediated [90], and the species that
build bowers are larger brained than either non-
bower-building relatives or ecologically similar but
unrelated species [91]. Finally, among precocial
birds, post-hatching care consists largely of protecting
and less of provisioning, allowing a test of the effect of
opportunities for social learning without being con-
founded by that of direct energy inputs to the young.
This care is highly variable, but largely homogeneous
within families (because most variation is at the
higher taxonomic levels, we therefore consider patterns
at the level of family). As predicted, the number of
caretakers in a family strongly predicts relative brain
size (K. Isler & CvS 2010, unpublished data).
5. DISCUSSION
(a) The evolution of intelligence

The cultural intelligence hypothesis makes plausible
assumptions that were empirically supported: (i)
social learning is more efficient than individual learn-
ing, and (ii) animals appear to rely on it
preferentially. The developmental effects on skill
repertoires it predicts were found as well, whereas we
also found preliminary support for the predicted evol-
utionary effects: interspecific correlation between
individual and social-learning abilities and a relation-
ship between opportunities for social learning and
cognitive abilities across taxa. Future tests should
focus on aspects not yet sufficiently evaluated. For
instance, species with high social tolerance, as well as
species with demonstrated traditions in natural con-
ditions, should have a larger relative brain size than
sister taxa lacking these features. If future tests
remain favourable, then cultural intelligence should
be part of the explanation for variation in intelligence
and brain size across species.

Unlike the cultural intelligence hypothesis, cur-
rently popular hypotheses for the evolution of
intelligence emphasize specific benefits. For the line-
age that gave rise to humans, the primates, the most
popular idea is that the challenges and opportunities
of living in individualized, stable social groups have
provided the strongest selective pressure towards
increased cognitive abilities (social brain hypothesis),
but ecological pressures, such as foraging demands,
have probably contributed as well [92]. More specific
benefits may have applied in particular lineages (e.g.
acoustic foraging in aye-ayes: [93]). All of these
hypotheses enjoy some support from comparative
tests using brain size as a proxy for cognitive
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performance (e.g. [94]), although all hypotheses
positing domain-specific benefits must explain how
more generalized cognitive abilities, i.e. intelligence,
subsequently arose from these specific cognitive adap-
tations. An alternative approach assumes domain-
general benefits in the form of general problem-solving
abilities, bringing fitness-enhancing behavioural flexi-
bility [14,79]. This idea is supported by the high
correlations among performance measures on various
and sundry cognitive tasks, suggesting the existence of
general intelligence in animals, at least primates
[95,96]. There is also a good relationship between this
general intelligence and aspects of brain size [79,86].

Such benefits alone may not be sufficient to explain
patterns in the evolution of brain size and intelligence.
Brain tissue is metabolically more costly than many
other tissues in the body, and consequently larger
brains lead to developmental delays in precocial
species [97] or require species to have higher meta-
bolic turnover [98]. Therefore, benefits owing to
increased brain size must be greater than those
owing to equal changes in the size of most other tis-
sues. Indeed, variation in the strength of these costs
or ability to bear them explains much interspecific
variation in brain size [97,99]. By arguing that social
learning leads to a more efficient use of brain tissue
than individual exploration, the cultural intelligence
hypothesis explicitly acknowledges these costs.

The efficiency argument holds regardless of the
exact nature of the benefits or whether the benefits
are domain-general or domain-specific, provided
learning of skills is involved. Thus, the cultural intelli-
gence hypothesis complements the benefit hypotheses
mentioned above by specifying the conditions in which
these benefits are likely to be cost-effective enough to
be favoured by natural selection. The cultural intelli-
gence hypothesis is therefore not meant to replace
the benefit hypotheses because intelligence will not
be favoured by natural selection merely because the
costs are low, but only if it also provides clear improve-
ments in survival or reproductive success. Rather, the
cultural intelligence hypothesis specifies the conditions
in which these potential benefits can be realized,
namely whenever the social conditions allow sufficient
social learning.

The complementarity with the benefits hypotheses
makes it difficult to independently test the cultural
intelligence hypothesis, at least until information on
the taxonomic incidence of the expression of culture
and oblique and vertical social learning is available.
However, the cultural intelligence hypothesis correctly
predicts the interspecific correlation between asocial
and social learning, which is not predicted by the
benefit hypotheses. It can also account for correlated
evolution between opportunities for social learning
and relative brain size, independent of living in stable
groups.
(b) Cultural intelligence and human evolution

Species vary dramatically in cognitive abilities. Much
of this variation should be linked to the extent to
which social learning is possible and improves survival
and/or reproductive success. The equilibrium reached
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in a particular taxon will depend on (i) its social
system and life history, i.e. its aggregate measure of
opportunities for social learning, and (ii) the degree
to which the possession of any skills or knowledge
will improve survival or reproductive success. The
latter need not be true for organisms in habitats with
high unavoidable mortality. Some species will there-
fore end up relying more on social learning and on
more sophisticated forms of it than others, even if
opportunities for social learning are similar. Evidently,
taxa with highly tolerant social systems, slow develop-
ment and low rates of unavoidable mortality are
expected to have evolved the most extensive forms of
social learning. Great apes, capuchin monkeys, dol-
phins and toothed whales, elephants, corvids and
parrots, all lineages with known social-learning
abilities [100,101], fit these conditions.

The evolution of uniquely human cognitive abilities
is entirely consistent with the cultural intelligence hypo-
thesis. Although the term cultural intelligence had
been proposed earlier [11] to apply to animals gener-
ally, Herrmann et al. [5] soon thereafter used the term
cultural intelligence to specifically refer to humans (i.e.
the Vygotskian intelligence hypothesis [3]). Their
comparison of adult chimpanzees and orang-utans
with human toddlers showed that human infants out-
performed apes in the social, but not the physical
domains of cognition, suggesting that socio-cognitive
abilities (including social learning) and physical cogni-
tion have become dissociated in humans. This may
seem inconsistent with the broader cultural intelli-
gence hypothesis, but note that human adults clearly
outperform all great apes in both social and physical
cognition, indicating the social cognitive abilities
simply mature earlier than the physical cognitive abili-
ties. Herrmann et al. [5] version of the cultural
intelligence hypothesis thus is that humans show specific
adaptations fostering social learning that become appar-
ent early in ontogeny and enable a further, socially
constructed amplification of cognitive skills. This pos-
ition is paralleled by the concept of pedagogy proposed
as a specifically human adaptation by Gergely et al.
[102], which encompasses specialized communicative
acts on the part of the role model and specific sensitivity
to these acts on the part of the infant. These human-
specific adaptations are entirely consistent with the
broad cultural intelligence hypothesis developed here
(cf. [103]), and probably arose after humans adopted
cooperative breeding [104,105].
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