## Math 55a Homework 9

Due Wednesday November 3, 2021.

Material covered: Conjugacy classes; class equation; $p$-groups; the symmetric group.
(Artin §7.1-7.5)

1. Let $p$ be a prime number, and let $G$ be any group of order $p^{3}$.
(a) What are the possible orders of the center $Z$ of $G$ ?
(b) Assume $G$ is not abelian, and let $g \in G$ be an element not in the center $Z$. What can be the order of its centralizer? (Recall that the centralizer of $g$ is the subgroup consisting of all elements of $G$ that commute with $g$.)
(c) What are the possible class equations for $G$ ?
2. Consider the Heisenberg group

$$
H=H\left(3, \mathbb{F}_{p}\right):=\left\{\left.\left(\begin{array}{ccc}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{F}_{p}\right\}
$$

(a) Find the commutator subgroup $H^{\prime}$ of $H$ (recall that $H^{\prime}$ is the subgroup generated by all commutators $[g, h]=g h g^{-1} h^{-1}$ ). What is the quotient $H / H^{\prime}$ ?
(b) Describe all the conjugacy classes in $H$.
(c) Find all the normal subgroups of $H$.
3. Let $G$ be the group of affine transformations of $\mathbb{F}_{p}$ ( $p$ prime), i.e. maps $f_{a, b}: \mathbb{F}_{p} \rightarrow \mathbb{F}_{p}$ of the form $f_{a, b}: x \mapsto a x+b$ for $a, b \in \mathbb{F}_{p}, a \neq 0$.
(a) Find the commutator subgroup $G^{\prime}$ of $G$, and describe the quotient $G / G^{\prime}$.
(b) Describe all the conjugacy classes in $G$.
(c) Show that the classification of normal subgroups of $G$ is determined by that of subgroups of $\mathbb{F}_{p}^{\times}=\left(\mathbb{F}_{p}-\{0\}, \times\right)$.
(Optional: what about non-normal subgroups of $G$ ?)
4. Find all finite groups $G$ that have at most 3 conjugacy classes.
5. Let $\sigma, \tau \in S_{n}$ be any two permutations. Show that, even though the products $\sigma \tau$ and $\tau \sigma$ may not be equal, they have the same cycle lengths.
6. (a) List the conjugacy classes in the alternating group $A_{6}$, and find the number of elements in each.
(b) Use this to prove that $A_{6}$ is simple.
7. For what integers $n$ does there exist a surjective homomorphism $\phi: S_{n} \rightarrow S_{n-1}$ ?
8. Show that a nonabelian group of order 21 exists by finding one explicitly as a subgroup of $S_{7}$. (Note: The shortest way to solve this problem is to observe that one of the groups you have recently encountered contains a subgroup of order 21, and acts on a set with 7 elements. An alternative, more systematic approach is as follows. Sylow's theorems imply that a group of order 21 contains a unique subgroup of order 7 . Taking this for granted, you can try to first build an example "by hand", denoting by $x$ an element of order 7, by $y$ an element not in the subgroup generated by $x$, and figuring out first the order of $y$, then what $y x y^{-1}$ might be. You can then turn your example into a subgroup of $S_{7}$ by finding suitable permutations that $x$ and $y$ might map to.)

9*. (Optional, extra credit) Let $P G L_{2}\left(\mathbb{F}_{p}\right)$ be the quotient of $G L_{2}\left(\mathbb{F}_{p}\right)$ (the group of $2 \times 2$ invertible matrices with entries in $\mathbb{F}_{p}$ ) by the normal subgroup consisting of scalar multiples of the identity.
(a) What is the order of $P G L_{2}\left(\mathbb{F}_{p}\right)$ ? Show that $P G L_{2}\left(\mathbb{F}_{p}\right)$ acts on the set of 1-dimensional subspaces of $\left(\mathbb{F}_{p}\right)^{2}$, and that this determines a homomorphism $\psi: P G L_{2}\left(\mathbb{F}_{p}\right) \rightarrow S_{p+1}$; what can you say about this homomorphism for $p=2$ and $p=3$ ? (Cf. HW 8 Problem 8).
(b) We now focus on $p=5$. Show that $\psi: P G L_{2}\left(\mathbb{F}_{5}\right) \rightarrow S_{6}$ is an injective homomorphism, whose image $H \subset S_{6}$ acts transitively on $\{1, \ldots, 6\}$.
(c) Show that the action of $S_{6}$ on the set of left cosets of $H$ (by left multiplication) gives rise a homomorphism $f: S_{6} \rightarrow S_{6}$, and that $f$ is an isomorphism from $S_{6}$ to itself. (Hint: what can you say about $\operatorname{Ker}(f)$ ?) Also show that $f(H) \subset S_{6}$ is contained in a subgroup $S_{5} \subset S_{6}$ of permutations which fix one element of $\{1, \ldots, 6\}$.
(d) Comparing $H$ and $f(H)$, show that the automorphism $f$ of $S_{6}$ is not an inner automorphism, i.e. not a conjugation $c_{g}: x \mapsto g x g^{-1}$ for some $g \in S_{6}$.
(This is the only instance of an automorphism of $S_{n}$ not given by conjugation! For $n \neq 6$ all automorphisms of $S_{n}$ are inner, and for $n \notin\{2,6\}, \operatorname{Aut}\left(S_{n}\right)$ is isomorphic to $S_{n}$ via $g \mapsto c_{g}$.)
10. How long did this assignment take you? How hard was it? What resources did you use, and how much help did you need? (Remember to list the students you collaborated with on this assignment.) Did you have any prior experience with this material?

