

CS289 Bio-inspired Multi-agent Systems

Radhika Nagpal <u>nagpal@g.harvard.edu</u> or rad@eecs.harvard.edu Fall 2021: Wed, Fri 3:45-5pm, SEC 1.316

1

Announcements

- * CS289 Course Staff
 - * Radhika Nagpal (SEC 4.207)
 - * Website: main repository of all information on the class
 - * https://canvas.harvard.edu/courses/92485
- * Next Wed: First Assignment due (Reading + Review)
 - * There is a paper reading and review due.
 - * You will email me a short review by 7am Wed morning, as explained on the website.

Bio-inspired Collective Systems

- * Collective Intelligence in Nature
 - * Complex goals can be achieved by collectives of relatively simple and limited individuals
 - * Parallelism, robustness, adaptability
- * Emerging Novel Distributed Systems
 - * Massive numbers, small scales, embedded
 - * Challenge: how do we construct robust and predictable systems?

6

Emerging Distributed Systems Ron Weiss, Planeton

Bio-inspired Collective Systems

- * Collective Intelligence in Nature
 - Complex goals can be achieved by collectives of relatively simple and limited individuals
 - * Parallelism, robustness, adaptability
- Emerging novel distributed systems
 - * Massive numbers, small scales, embedded
 - * Challenge: how do we construct robust and predictable systems?
- * Collective "Artificial" Intelligence
 - * Extract robust and scalable engineering techniques from our understanding of biological collectives.

8

What This Course is About

Grad-level Research Area Course

- * Survey Bio-inspired Approaches and Applications
 - * Three main topic areas:
 - * **Swarm Intelligence** ("social animals" as a metaphor)
 - * Cellular Automata & Self-Assembly ("cell" as a metaphor)
 - * Evolutionary Computing ("evolution" as a metaphor)
 - Also some Special Topics (ML for Swarms, Human collectives)
- * Read papers (primary sources)
 - * Read papers on models of natural collectives
 - Read papers on applications to distributed systems design
 - * Discuss and Present
- Conduct Research (final project)
 - Extend an existing paper's results, apply biological principle to a distributed systems problem, solve computational/theory problem related to collective intelligence, or model a biological system

q

How This Class Works

- Reading and Class Participation
- Paper Reviews
- Lecture Presentation
- Class Project

10

How This Class Works

- Reading and Class Participation
- Paper Reviews
- Lecture Presentation
- Class Project
- * Reading and Class Participation
 - * Each class has 2 papers assigned for reading, one primary paper and one for context (Interdisciplinary)
 - * In class we will discuss the papers, lessons and implications, what "principle" can be generalized, etc.
 - * Caveat: useless if you don't do the readings!

How This Class Works

- Reading and Class Participation
- Paper Reviews
- Lecture Presentation
- Class Project
- * Paper Reviews
 - * Due by 7am before class day
 - * Post to cs289 discussion board (email for now)
 - * Format: See guidelines on the website
 - * Paper review due before next class: send via email

12

How This Class Works

- Reading and Class Participation
- Paper Reviews
- Lecture Presentation
- Class Project
- * Presenter Days
 - * Some classes are "presenter days"
 - * Everyone does one presenter paper (in pairs).
 - * The goal is for the presenter (you) to look into the subject in more depth and educate the class on an additional interesting topic.
 - Content: recent papers or special topics (TBD)

How This Class Works

- Reading and Class Participation
- Paper Reviews
- Lecture Presentation
- Class Project
- * Final Research Project (in pairs)
 - * Goal is to explore a topic of your interest in more depth
 - * Project: Theory, bio-inspired distributed systems application, models of biology, even robotics
 - * Key: Choosing the Scope of the problem (1 month)
 - * Deliverables: Presentation + Paper
 - * READ FINAL PROJECT GUIDELINES and examples online

14

How This Class Works

- Reading and Class Participation
- Paper Reviews
- Lecture Presentation
- Class Project
- * Grades are roughly
 - * 1/2 InClass Participation, Reviews, Presenter Day
 - * 1/2 Final Project

Schedule: See Online

Topics

Swarm Intelligence (4 weeks) Cellular Computing (2 weeks) Evo Computing (2 weeks) Presenter Days (2.5 weeks) **Final Project Dates**

*Scope: 1 month

Oct 15 Discussion & teams

Nov 1 Proposal due

Dec 1 and 3 Presentations

Dec 10 Final papers due.

16

Introductions

- * Introduce yourself
 - * Help us get to know each other, and also help me pick/allocate presenter paper topics.
 - * Name, Graduate program, Brief description of your research area and areas of interest for this class.

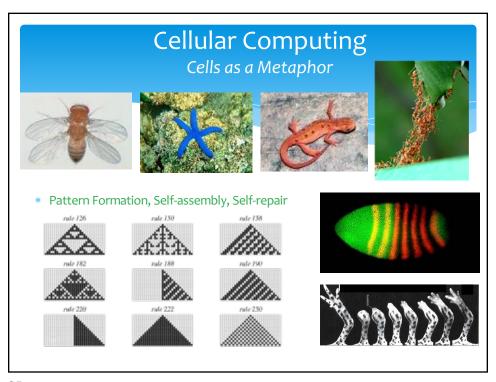
9/24/21

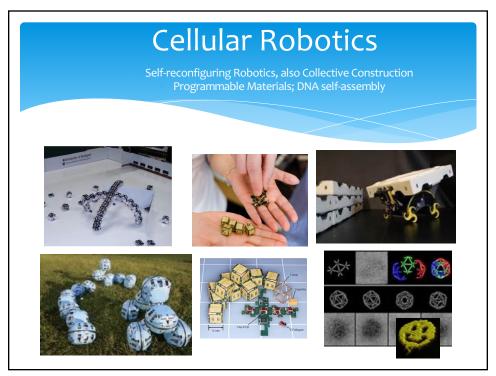
Three Topics Areas

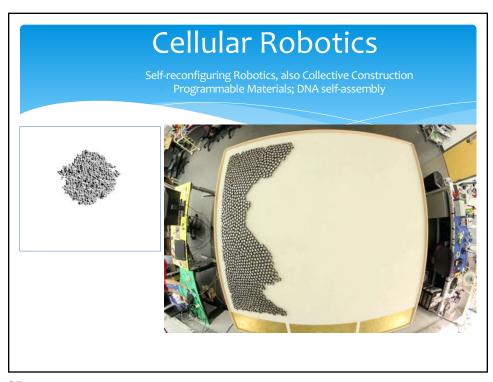
- * Swarm Intelligence
- * Cellular Computing
- * Evolutionary Computing

18

Swarm Intelligence Social Animals as a Metaphor First Observation of a Open Air Bivouac March 19, 2016 (Radhika's 45th birthday)


Swarm Intelligence


- * Models of social insects and animal coordination
 - * Primitives: Search, Transport, Sync, Flocking, Construction
 - * Principles: e.g. Stigmergy & Distributed Consensus
 - * Reading: biology and applied math papers
- * Algorithms and Applications
 - * Many "generic" algorithms that have wide application
 - * Reading: Applications to Optimization, Networks, Robotics
- * Open Question: Analysis and Synthesis


23

Three Topics Areas

- * Swarm Intelligence
- * Cellular Computing
- * Evolutionary Computing

Cellular Computing

- * Models from Multi-cellular Biology
 - * Local: Gradients, Directed growth, Stochastic rules
 - * Global: Cellular Automata; Self-assembly; Regeneration
- * Algorithms and Applications
 - * Global-to-local Compilers and Theory
 - * Algorithmic approaches to self assembly and self-repair
 - * Robotics and Programmable Materials
- * Open Question: Scalability and Hardware

Three Topics Areas

- * Swarm Intelligence
- * Cellular Computing
- * Evolutionary Computing

29

Evolution as a metaphor

The World == Complex goals & Dynamic environments
An Amazing Variety of "Solutions"

- * Evolution as Population + Variation + Selection
- * Evolution as optimization/learning
- * Evolution as a design process...

Evolution-inspired Computing

- * Evolutionary Computing
 - * Evolution as optimization using a population of agents
 - * Different algorithmic flavors (e.g. genetic programming)
- * Applications
 - * General Algorithms: Optimization and Search problems
 - * Evolutionary Design and Programming "Invention"
 - * Evolutionary Robotics and Robot Collectives
- * Open Question: Applying evolution to collectives

33

Three Topics Areas, plus

- * Swarm Intelligence
- Cellular Computing
- * Evolutionary Computing
- * Presenter Days:
 - * Self-Assembly, ML & Swarms, Human Collectives

CS289

- * Final Reminders
 - * There are Papers to read for next week!
 - * email reviews to Radhika
- * Questions?