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Abstract

This paper studies the implications of taste projection—the tendency to overestimate
how similar others’ tastes are to our own—within social-learning environments. Indi-
viduals sequentially choose among two options with payoffs dependent on an unknown
state and one’s idiosyncratic, privately-observed taste. Learning about the state from
others’ choices requires people to assess whether uncommon actions were likely provoked
by atypical tastes or private information contradicting the public belief. Taste projec-
tors misattribute actions to information relative to taste. In settings where rational
agents correctly learn the state, projection leads some (and perhaps all) to continually
choose incorrectly. Long-run beliefs and behavior are determined by a player’s taste
and the degree of all players’ biases. When each thinks her taste is most common, all
players inevitably choose the same option and each grows certain this choice is optimal.
But if some understand they have uncommon taste, social beliefs and behavior may
perpetually cycle—history never provides a clear message about the optimal choice.
If agents also infer about others’ tastes from actions, an initial bias in the perceived
taste distribution can be intensified: agents conclude more share their taste than antic-
ipated. These results cannot be explained by rational learning under uncertainty about
the distribution of preferences.
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1 Introduction

We use the actions of our friends, neighbors, and peers for guidance in many decisions. This
is true of both daily decisions—where to dine or which movie to watch—and those with larger
stakes, like which college major to choose, which stocks to buy, or for whom to vote.1 In any
of these domains where we’d expect social learning, the tastes of those we observe surely play
a role in their decisions. Hence, when inferring our own optimal decision from others’ choices,
we must account for their differing goals and motives. For instance, when a friend patronizes
a particular restaurant, we learn something about the restaurant’s commonly-valued quality,
but her decision also reflects her taste for that cuisine. And a stock purchase signals both
a company’s expected value and the investor’s risk preferences. In each of these cases, two
individuals with the same information may reasonably choose different actions.

To disentangle the information driving others’ choices from their tastes, we must predict
how preferences are distributed within our social network. But evidence on “social pro-
jection” and the “false-consensus effect” suggest these predictions may be biased: we tend
to overestimate how similar others’ tastes are to our own.2 For instance, people overesti-
mate how many share their tastes for typical consumption goods (Ross, Greene, and House,
1977), political candidates (Delavande and Manski, 2012), and risk (Faro and Rottenstre-
ich, 2006). Van Boven and Loewenstein (2003) show that people also project transitory
preferences, whereby overestimating how many share their current feelings like hunger and
thirst. In social-learning settings, such misprediction of others’ tastes introduces a system-
atic bias in what people infer from others’ choices. For instance, fixing the number of people
in a restaurant, those with a strong preference for its cuisine—who wrongly expect many
to attend—develop a more pessimistic perception of it’s quality than those with a weaker
preference. By incorporating taste projection into canonical models of observational learning
(namely, those of Banerjee, 1992; Bikhchandani et al., 1992; Smith and Sørensen, 2000), this
paper studies how and when these misperceptions lead society astray.

To outline the model, suppose investors with varied risk preferences wish to learn whether
a new company A is riskier, but has higher potential return, than a known alternative B. A
fraction λ prefers the safer investment whereas 1−λ seeks the higher-return alternative. From
experience with similar companies, investors have noisy private information about the relative

1To give but a few examples, within consumption domains, Cai et al. (2009), Salganik et al. (2006), and
Moretti (2010) respectively demonstrate the impact of social learning on the demand for restaurants, music,
and movies. In domains with larger stakes, social learning has been shown to drive investment in new crops
(Conley and Udry, 2010) and generate momentum in primary elections (Knight and Schiff, 2010).

2While this “biased” prediction can rational when people use their own preferences as information, Engel-
mann and Strobel (2012) and others show this tendency persists even when people have access to an unbiased
sample of others’ tastes, inconsistent with Bayesian updating. Section 2.2 reviews this evidence in detail.
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risk, and hence before sales data materializes, investors use others’ choices for additional
information. But heterogeneity in tastes complicates inference. Did a predecessor choose
A because she’s risk averse with private information that A is safe? Or due to precisely
opposite preferences and opposite information? Smith and Sørensen (2000) characterize
players’ long-run beliefs and behavior in such settings provided that λ—the distribution of
preferences—is common knowledge. This paper, in contrast, does so assuming agents project
tastes: each overestimates how many seek their same objective. The risk averse think λ̂ > λ;
the return seekers think λ̂ < λ. When these two different types of traders observe somebody
invest in A, they draw different conclusions about that predecessor’s signal, and hence about
the attributes of the asset: relative to her risk-neutral counterpart, the risk-averse investor
overestimates the likelihood that A is safer than B.

How do these differing conclusions interact and shape social learning? Since each type
forms different beliefs about predecessors’ information, taste projectors never reach long-run
agreement on the state and, thus, never mutually learn the truth. In settings where rational
agents always learn, projection leads some types to continually choose incorrectly. Whether
a player chooses optimally is determined by both her own taste, which dictates how she
interprets past actions, and the extent of all others’ biases, which determines the distribution
of actions she observes. But in many of the cases I consider, projection creates a herd: all
players grow confident that a particular option X is optimal for her taste, irrespective of
whether this is true. These results help explain three phenomena inconsistent with rational
learning. First, taste projection suggests why uniform behavior may arise despite diverse
preferences. Second, it shows how society can develop and maintain confident yet false
beliefs even when observing an arbitrarily large sample of informative behavior.3 And third,
naive learning can perpetuate a false-consensus bias. That is, if agents learn about others’
tastes from actions but ignore differences in prior beliefs, then each type can grow more
confident over time that her taste is most common.

Section 2 formalizes the model, which adds taste projection to an observational-learning
setting based on Smith and Sørensen (2000). A sequence of agents, N acting per period,
choose between two actions, A and B. An action’s payoff derives from characteristics along
two dimensions: (1) the “vertical” dimension measures commonly-valued quality, q, and (2)
the “horizontal dimension” specifies a heterogeneously valued attribute, z.4 For example,
q is the quality of a restaurant or film, whereas z is the cuisine or genre. Alternatively, q

3The rational-herding literature shows that when learning from others, society may forever choose subop-
timal actions. But as Eyster and Rabin (2010) note, in any setting where an incorrect herd may arise, rational
agents never grow confident in the state of the world. The rational-herding literature does not explain how
society may often develop confident yet false beliefs.

4This terminology is borrowed from models of spatial differentiation, like Hotelling (1929) and Downs
(1957).
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may be the expected return from a college major or stock, and z is the major’s subject or
the stock’s risk. Players have diverse tastes over “locations” along this horizontal dimension:
people prefer a location closest to her own taste, θ. For instance, fixing expected income, a
student most enjoys the college major who’s subject z is closest to her interests, θ. Agents
learn about (q, z) from private signals and the history of prior choices. To crisply identify
the effects of projection, I focus on environments where rational agents learn the state.5

To model taste projection, I assume agents mispredict the distribution of tastes θ over
horizontal attributes. Loosely, a player who prefers attribute z over z′ overestimates how
many share this preference. And the amount by which she overestimates is increasing in
the intensity of this preference. For instance, a risk averse trader overestimates how many
seek a safe investment relative to a risk neutral trader. I additionally assume that agents
are naive about this bias: they neglect that those with different preferences disagree on the
distribution of tastes. That is, each player wrongly assumes others draw inference using her
same model of the world, and thus thinks all players share her belief about the state after
any observation.6

Sections 3 and 4 study the case where quality is known, and the only uncertainty is
over horizontal attributes—for instance, investors are uncertain about the relative risk of
two startup companies. Following Smith and Sørensen (2000), I assume only two states of
the world: along the horizontal dimension, A is either to the left or right of B. Section 3
first develops preliminaries on how a player updates her beliefs over these two states as a
function of her perceived measure of those with right-leaning preferences, e.g., those investors
who prefer A if and only if A is likely safer than B. This measure, denoted λ̂, dictates how
she uses new observations. If she underestimates the variance in tastes—say, λ̂ = 0.9 when
in truth λ = 0.75—then she perceives actions as more precise signals of underlying private
information; her beliefs overreact relative to rational beliefs. If she overestimates the variance
in tastes—say, λ̂ = 0.6—then actions seem less informative and her beliefs underreact. And if
she mispredicts the majority taste—say, λ̂ = 0.4—then her beliefs move opposite the rational
belief after any observation.

Section 4 studies asymptotic properties of this learning process. Unlike rational beliefs,
convergence to a stationary limit is not guaranteed, and convergence to fully-incorrect beliefs

5I assume private signals have unbounded informativeness. In this environment, bounded informativeness
generates information cascades, whereby the information contained in the history of play eventually swamps
the information contained in the most informative signal. The setting also precludes “confounded learning”,
discovered by Smith and Sørensen (2000), where players converge to an uncertain stationary belief so long
as the quality difference is not too large. Appendix A addresses when confounded learning may occur, and
how this possibility alters my baseline results.

6A variety of research demonstrates that people tend to overestimate how many share their beliefs. For
instance, Egan, Merkle, andWeber (2014) survey a panel of private investors and find that people overestimate
how many share their beliefs about returns.
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is possible.7 However, limit beliefs are pinned down by the collection of all players’ perceptions
of the taste distribution. Characterizing limit beliefs in this way amounts to assessing whether
a system of beliefs (i.e., a belief for each type of player) is stochastically stable. I show that
these beliefs are stable only if all players observe more people than expected choosing what
they thought would be the majority action. It follows that taste projectors never converge
on identical long-run beliefs, and thus some agents necessarily fail to learn.

When and how learning fails depends on whether people agree on the majority taste.
When each thinks her taste is most common, agents inevitably herd on a single action X.
All grow confident—some rightly, some wrongly—that X is optimal for their taste, which
results in beliefs polarized according to preference. In the investment example, risk-averse
traders grow confident option A is safe, but return-seeking traders think it’s risky.8 Quite
simply, since each thinks her taste is most common, absent strong contrary signals, she
wants to follow the herd. As such, taste projection is one reason why uniform behavior
may emerge despite heterogeneity in tastes.9 When many act per round (N → ∞), the
minority necessarily learns incorrectly, and all choose the option optimal for the majority
taste. Hence, strong projection implies inadequate adoption of new technologies or welfare
programs beneficial only to a minority when people learn from others’ take-up decisions.
Observational learning is not only inefficient in this case, but potentially socially harmful.10

Although taste projection provides a clear logic for herding, uniform behavior is not a
general consequence. When players correctly agree on the majority preference, they never
settle on a fixed belief, let alone herd. Instead, society’s opinion of the optimal action
perpetually cycles.11 Returning to the investment example, if society is initially confident

7Since a player mispredicts how many of each action she should see conditional on her belief about the
state, her beliefs don’t form a martingale.

8The beliefs of agents with opposing tastes display a strong form of polarization where they grow fully
confident in alternative hypotheses. Other studies of persistent disagreement in learning settings, like An-
dreoni and Mylovanov (2012), demonstrate a much weaker form of polarization where agents with common
preferences disagree, but not confidently, on the optimal action. Rational models fail to explain confident
disagreement.

9Sorensen (2006), who studies observational learning in the selection of health-care plans, demonstrates
that observing others leads to uniformity in choice, despite heterogeneity in individuals’ optimal plans. After
the study, many switch away from the “herd” plan. Similarly, some medical practices are widely held as
universally beneficial, when in fact efficacy depends on heterogeneous characteristics of patients.

10Although rational observational learning can cause incorrect herds, (e.g., Bikchandani, et al., 1992) it is
necessarily welfare improving, on average, relative to relying solely on private information. Eyster and Rabin
(2010, 2014) show how a distinct form of naive learning in which people neglect redundancies in information
is also socially harmful.

11Here, projection generates fad-like behavior in a setting where rational behavior always converges. It is
possible, however, that rational behavior fails to converge in some social-learning settings, like when players
observe only immediate predecessors (Çelen and Kariv, 2004). Outside of rational models, Acemoglu, Como,
Fagnani and Ozdaglar (2012) show that opinions may persistently fluctuate when learning in a network if
some agents are “stubborn” and never update their beliefs. Such models help explain, for instance, persistent
fluctuations in political opinion (e.g., Kramer, 1971; and Cohen, 2003).
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that A is safe, then all of the risk-averse traders, say 75% of the market, choose A. But
those investors expect to see more than 75% choosing A. Their best explanation for such
low investment is that other risk-averse traders have strong private information that B is
safer. The risk averse switch to B, making B the most prevalent choice. This sends a clear
message to future investors: B is preferred by the majority, and is thus the safer asset. Once
the market is confident that B is safe, the same logic repeats: beliefs perpetually oscillate.12

This cycling is most dramatic when the majority’s perceptions are less biased than those in
the minority. In this case, long spells where all believe A is safe are followed by yet longer
spells where all think B is safe, and so on. Beliefs spend roughly equal time favoring each
state, causing players to make worse choices, on average, when learning from others than if
they simply followed their private information.

Section 5 introduces uncertainty over quality and allows a wide enough range so that
players may in fact prefer the same option. For example, all diners may attend the same
restaurant despite differences in taste if it’s perceived to have exceptional quality. I show
that with two types, no matter the true quality difference between options, society necessarily
concludes it’s large enough so that all prefer the same choice. Intuitively, projection causes
agents to first herd on some X, and the herd subsequently suggests that X has superior
quality. And since people inevitably herd on the more popular action, taste-based popularity
is systemically over-attributed to quality. This systematic misconstrual of “vertical” and
“horizontal” components of preference may help explain the notoriously slow adoption of
new agricultural technologies in environments where their productivities vary across farms:
people over-attribute low take-up to general ineffectiveness.13 Additionally, even when the
horizontal attributes of A and B are known—for instance, diners know A serves Argentinian
food and B is a Brazilian restaurant—agents still systematically mislearn quality. Fans of
Brazilian food attribute moderate popularity of B to limited quality rather than admitting
fewer people enjoy such cuisine. But Argentines adopt a higher perception of B’s quality to
justify higher-than-expected attendance. Those with the most positive view of B’s quality
are those who prefer the attributes of A.

Section 6 assumes uncertainty over the distribution of tastes, so agents revise their models
of others’ preferences as they observe actions. Although it seems plausible that learning
about tastes should ameliorate mislearning of payoffs, if agents naively neglect heterogeneity
in priors, then they may still fail to learn the optimal action. In fact, observing others can

12While tempting to think that non-convergence results from the coarseness of the state space—each
option takes one of two locations, implying agents expect to observe one of only two long-run frequencies—
non-convergence may also arise in a continuous state space.

13Munshi (2003) shows that the adoption rates of hybrid “high-yield” crops in India greatly depend on
how variable is output with respect to inputs. Strands of hybrid rice with productivity sensitive to the mix
of inputs on the farm have very slow adoption rates.
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intensify the bias in perceived taste distributions, leading all agents to conclude that most
share their taste. This may happen, for example, when the history begins with many choosing
A. In the investment example, the risk-averse investors infer that A is likely safe and λ > 1

2 ,
but to a risk-neutral agent, this indicates that A is likely risky and λ < 1

2 . Absent strong
contrary information, each type best responds with A. These conflicting beliefs perpetuate
the herd, from which people infer that all investors have similar taste.

Throughout the paper, I contrast naive-learning results with those following from ratio-
nal taste-dependent perceptions that arise from uncertainty over the distribution.14 While
rational beliefs always converge and never grow fully polarized, learning may still fail. With
positive probability, agents converge to an interior “confounding” belief where they cannot
discern, say, if many choose A because A is safe and most are risk averse, or because A
is risky and most seek high return. Smith and Sørensen (2000) show that under perfect
information about the distribution, such beliefs exist only when quality differences between
options are sufficiently large. In contrast, I show that with imperfect information they al-
ways exist. This extension provides a natural explanation for persistent disagreement.15 At
a confounding belief, people with different tastes disagree on payoffs: if most choose A, then
relative to a risk-seeking agent, a risk-averse agent thinks it’s more likely that A is safe.

I conclude in Section 7 by discussing related models and putting both taste projection and
social “mislearning” in broader context. I discuss why and how taste projection can distort
inference in more general environments where agents can directly communicate beliefs or
payoffs. For instance, consider learning about a restaurant’s quality from online reviews.
Diners with “sophisticated” tastes may report mediocre payoffs from a meal that typical
diners find remarkable; typical diners are hence misled if they underestimate how often they
glean advice from “sophisticates”. I also discuss settings where agents have biased perceptions
of the type distribution distinct from projection, such as a false sense of uniqueness. Finally,
I highlight some shortcomings of this model and suggesting avenues for future research.

2 Model

This section describes the basic decision environment and motivates a model of social taste
projection. I then define a solution concept in the presence of projection which pins down
beliefs about others’ perceptions and strategies. Two immediate implications follow from
these assumptions: (1) players with different tastes draw a distinct inference from any history

14This model, analyzed in the Appendix, is identical to Section 6 aside from the assumption of full ratio-
nality.

15Alternative explanations include uncertainty over the distribution of private information, as explored in
Acemoglu, Chernozhukov, and Yildiz (2007 and 2009).
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of play, but (2) each player wrongly thinks all draw the same inference.

2.1 Social-Learning Environment

Actions and Payoffs. There are two options {A,B} =: X ; each X ∈ X has quality qX ∈ R,
and location zX ∈ R. Like standard spatial-differentiation models, each player prefers higher
“vertical” quality, but preference over “horizontal” location depends on her type, θ ∈ R.16

For simplicity, I assume players’ have a utility function separable in quality and location:

u(X, θ) = qX − k(zX − θ)2, (1)

where k > 0 is a commonly-known preference parameter.17 Like Downs’ (1957) model of
political competition, q may measure the competence of a candidate, while z indicates how
liberal or conservative she is. Or, q is the skill of a chef or a writer, and z is his cuisine or
genre. An agent’s type θ indicates her most preferred z, be it political ideology or cuisine.18

States. Agents wish to learn the collection of each options’ characteristics, ((qA, qB), (zA, zB)).
To make clear how taste projection affects learning, I focus on the simplest such environ-
ment: there are only two possible location profiles, (zA, zB) ∈ {(−1, 1), (1,−1)}. That is, A
is either to the left of B, (zA, zB) = (−1, 1), or to the right of B, (zA, zB) = (1,−1). Let
ζ ∈ {L,R} denote the “location state”, where ζ = L if and only if A is left of B.19 It’s
also clear from the utility function that differences in quality, not absolute levels, matter
for choice. Hence, let ∆q := qA − qB and denote by D the (finite) set of possible quality
differences. The payoff-relevant state is ω = (ζ,∆q) ∈ {L,R} × D =: Ω. Agents share a
common prior π1 ∈ ∆(Ω).

Preference Types. Players’ preference types are i.i.d. draws from a finite set
Θ = {θ : θ = ±jδ, j = 1, ..., J}, δ > 0 and have c.d.f. G.20 I call types θ < 0 left types—they

16Hotelling (1929) is the classic example of a location model, and Downs’ (1957) model of political com-
petition extends it to a two-dimensional characteristic space, as I similarly do here.

17The assumption that attribute z has value equal to the squared distance from one’s location is without
loss of generality. Results are identical if (zX − θ)2 is replaced by any metric d(zX , θ).

18As here, I often refer to preference types simply as “types” despite the fact that a complete description
of a type also includes a player’s private information. To avoid confusion, I will be explicit whenever I refer
to this complete notion of type.

19While admittedly restrictive, this binary-state assumption is common in the literature. Smith and
Sørensen (2000), who study rational learning in a similar setting, also focus on two feasible location pro-
files, noting that additional states come at “significant algebraic cost.”

20Except for Section 6, I assume beliefs over the distribution of tastes, G, are degenerate. In Section 6, I
introduce uncertainty over G—people may be uncertain whether the majority is risk averse or risk neutral—
so an agent’s perceived distribution of tastes rationally depends on her own type θ. This generalization
allows us to contrast learning in the presence of rational taste-dependent distributional beliefs with learning
under taste projection, where a player’s belief about the taste distribution depends on taste beyond rational
Bayesian inference.
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prefer the left option provided both options have identical quality; similarly, θ > 0 are right
types. As it plays a key role in inference, I denote by λ := 1 − G(0) the measure of right
types. With out loss of generality, assume right types comprise the majority: λ > 1/2.

Timing. In every period t = 1, 2, ..., a new set of N ≥ 1 players is drawn, and each
simultaneously takes an action X ∈ X . Each player is labeled nt; t is the period in which
she acts, and n ∈ {1, 2, ..., N} is her label within that period. Since all N players in t

act independently conditional on the history of play, the number of A’s taken in t, denoted
by at ∈ {0, 1, ..., N}, is a sufficient statistic for profile of actions observed in t. Hence, let
ht = (a1, ..., at−1) denote the history of the game up to time t, where h1 = ∅.

Beliefs. Before acting, Player nt observes her preference type θnt, a private i.i.d. signal
snt about the state, and the complete ordered history of actions, ht.21 Her choice, which is
based on a combination of this information, partially reveals her private signal to followers.
For each ω ∈ Ω, let πθt (ω) denote a type-θ player’s belief that the state is ω conditional
solely on ht and the prior; I call this the public belief in t.22 Much of this paper analyzes the
properties of the sequence of type’s public belief, 〈πθt 〉.

Finally, denote by Γ the game described above, and let Γ(G) denote the game explicitly as
a function of the taste distribution (keeping all other aspects fixed). Taste projection, which
I introduce in the next section, will assume that one misperceives the taste distribution as
Ĝ 6= G, but has an otherwise correct model of the game: her perceived game is Γ(Ĝ).

2.2 Taste Projection: Evidence and Model

This section reviews the literature motivating my main assumption of taste projection, and
it provides a simple formulation of this bias consisting of two key assumptions: (1) an agent’s
perceived preference distribution depends on her own taste, and (2) she neglects that others’
perceptions depend on their tastes.

2.2.1 Motivating Evidence

The notion that people systematically misptredict others’ tastes is supported by several
strands of research. A large literature in social psychology studies inter-personal projection—
the idea that people’s own habits, values, and behavioral responses bias their estimates of

21Specific details of the signal structure are provided in the following section.
22I use the term “public belief” to conform to existing literature. “Public” in this context does not mean

the belief is common across players: taste projection and the solution concept introduced below naturally
imply that different taste types draw different inference from ht. Instead, “public” refers to the source of the
belief, as it’s derived from publicly observable behavior.
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how common are such habits, values, and actions in the general population.23 Early work,
including Ross, Greene, and House (1977) who coin the term “false-consensus effect”, find
positive correlation between subjects’ own preference responses and their estimates of others’
responses.24 Many similar studies followed that document this correlation across a wide
range of domains, like preferences over political ideology and candidates, risk preferences,
and preferences for income redistribution.25

Each of these studies, however, simply document correlation between a subject’s own
taste and her prediction. Is such correlation necessarily indicative of an error? If there is
uncertainty about others’ tastes, the answer is no. As first noted by Dawes (1989), with
uncertainty, a Bayesian should use her own taste as information, resulting in rational type-
dependent estimates that appear consistent with a “false-consensus” bias.

23For example, US citizens display taste-dependent responses when predicting how many support their
government’s use of torture. During the Bush administration, politicians advocating the use of controversial
interrogation methods often alluded to polls indicating the methods had wide public support. Gronke et
al. (2010) collected a more comprehensive data set that both falsifies these claims and demonstrates the
correlation between one’s own opinion on torture and their prediction of others’ opinions. Survey participants
stated their opinion on how frequently torture should be used—either never, rarely, sometimes or often—and
estimated the percent of people who chose each of those options. Each row in the table below shows the
predictions of a particular response type. For instance, the first row is comprised of estimates of people who
stated “never”—people who chose never, on average, guessed that 5% of people chose “often”, etc. The last
row shows the true percentages of responses.

Taste-Dependent Predictions
Prediction

Never Rarely Sometimes Often

Response

Never 31% 25% 39% 5%
Rarely 7% 51% 35% 7%

Sometimes 3% 26% 67% 4%
Often 4% 12% 48% 36%
True 30% 24% 29% 17%

24Subjects in Ross, Greene, and House (1977) gave their own (binary) response to a question, and predicted
the fraction of subjects who answered similarly. (E.g., “Are you politically left of center?”; “Do you prefer
basketball over football?”; “Will there be women in the supreme court in the next decade?”; “Do you prefer
Italian movies over French?”) Out of 34 questions, 32 were consistent with taste projection: those who answer
“yes” to a question overestimate how many others will answer “yes” relative to those who answer “no”.

25Marks and Miller (1987) review 45 different studies documenting the false-consensus effect published
over the decade following Ross, Greene, and House (1977). Mullen, Atkins, Champion, Edwards, Hardy,
Story, and Vanderlok (1985) find robust evidence of this correlation in a meta-study of 115 tests. Across
domains, Brown (1982) and Rouhana, O’Dwyer and Vaso (1997) find type-dependent perceptions of political
preference; Cruces, et al. (2013) find type-dependent misprediction of the income distribution in Argentina
and demonstrate that this leads to misprediction of population preferences for income redistribution; Faro
and Rottenstreich (2006) find correlation between subjects’ own risk preference and their perception of others’
risk preferences.
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Motivated by this critique, Krueger and Clement (1994) and others provide evidence that
this “bias” remains even when subjects have information about others’ preferences. They find
that subjects use their own preference information more so than that of anonymous others
when making population predictions, inconsistent with Bayesian rationality.26 In incentivized
settings, Engelmann and Strobel (2012) verify that a “truly-false” consensus bias remains so
long as subjects must exert a small amount of effort to get information on others’ choices;
when this information is not freely available or made salient, people rely too heavily on their
own choice when predicting the choices of others. So long as attending to others’ tastes comes
at some cost, this result suggests that people can hold incorrect type-dependent beliefs about
population preferences even in settings with ample opportunity to observe others—that is,
where the “Dawes critique” should have little bearing.27

Relatedly, economists have argued intra-personal projection bias—exaggerating the de-
gree to which future preferences resemble current preferences—influences behavior.28 To the
extent that preferences of contemporaneous others are similarly difficult to predict, we should
expect the logic of intrapersonal projection bias to suggest interpersonal-projection. An in-
tuition for intrapersonal projection is that we “mentally trade places” with our future selves,
and in doing so, project our current preference states. But this exact logic applies when
empathizing with another. Indeed, Van Boven and Loewenstein (2003) show that the same
transient preference states shown to warp subjects’ perceptions of own future preferences also
distort predictions of others’ preferences. Subjects’ predictions of whether thirst or hunger
would be more bothersome to hypothetical hikers lost without food or water were biased
in the direction of subjects’ own exercise-induced thirst. More economically relevant, Van
Boven, Dunning and Loewenstein (2000, 2003) show that sellers who experience an endow-
ment effect project their high valuation of a good onto the valuations of potential buyers,
causing sellers to set inefficiently high prices.

26Krueger and Clement (1994) deduce that when estimating the percent of subjects that endorse some
action or preference, subjects use their own response nearly twice as much as the response of an anonymous
other. A rational Bayesian should, of course, use these two responses equally.

27Using data from the American Life Panel, Delavande and Manski (2012) show that perceptions of others’
candidate preferences in the 2008 U.S. presidential election and 2010 congressional election were consistent
with the false-consensus effect even after the release of poll results. While this finding may indicate additional
statistical biases (e.g., failure to appreciate the Law of Large Numbers—see Benjamin, Raymond, and Rabin,
2013), it shows that taste-dependent perceptions can persist despite opportunity to learn about others’ tastes.

28For empirical studies see Busse, Pope, Pope, and Silva-Risso (2012), Simonsohn, (2010), and Conlin,
O’Donoghue, and Vogelsang (2007). For example, Busse, et al. shows that projection bias affects demand
and prices in large, high-stakes markets for cars and houses. Loewenstein, O’Donoghue, and Rabin (2003)
provide a general overview of the evidence and draw out implications of a formal theoretical model.
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2.2.2 Perceived Distributions: Biased First-Order Beliefs

I model taste projection by assuming an individual’s preference type θ influences her perceived
distribution of types. In truth θ ∼ G. Denote a θ type’s perception of G by Ĝ(·|θ). Consistent
with the false-consensus effect, I assume right-leaning types think right types are relatively
more common, while left-leaning types think the opposite.

Assumption 1. (Stochastically Dominating Perceptions.) Ĝ(θ|θ′) weakly first-order stochas-
tically dominates Ĝ(θ|θ′′) if and only if θ′ > θ′′. That is, whenever θ′ > θ′′, Ĝ(θ|θ′) ≤ Ĝ(θ|θ′′)
for all θ ∈ Θ.29

The more right-leaning is an agent’s taste, the higher is her estimate of those with right-
leaning tastes. For example, people with conservative political views overestimate the share
of those who prefer the conservative candidate, or those with high risk aversion overestimate
the share seeking safe investment strategies. The perceived measure of right types—a key
statistic in drawing inference from actions—is denoted by λ̂(θ); dominance implies λ̂(θ) is
weakly increasing in θ.

For sake of intuition, I often consider a simple form of projection I call choice-dependent
projection: one’s perceived distribution depends only on her preferred location, not on the
intensity of this preference. In this case, all left types think the distribution is Ĝl, whereas all
right types think it’s Ĝr, and the perceptions satisfy Ĝl � G � Ĝr.30 This essentially implies
just two types—left and right. Left types think the measure of right types is λ̂l := 1− Ĝr(0),
while right types perceive it as λ̂r := 1 − Ĝl(0), and λ̂l < λ < λ̂r: left types underestimate
the measure of right types, but right types overestimate it.31 As I show in Section 4, two

29I assume weak domination to allow different θ’s to hold identical perceptions. If θ′ > θ′′ then the two
types need not have different perceptions of the distribution of tastes; however, if their perceptions do differ,
it must be the case that Ĝ(θ|θ′) strictly first-order stochastically dominates Ĝ(θ|θ′′): Ĝ(θ|θ′) ≤ Ĝ(θ|θ′′) for all
θ ∈ Θ with strict inequality for some θ. Let % and � denote weak and strict first-order stochastic dominance,
respectively.

30The term “choice dependent” follows from the fact that under this class of misperceptions, when the
characteristics of the options are known, people overestimate the share of others that would choose the same
option as themselves. However, they don’t necessarily overestimate the share of people with their identical
taste parameter, θ. Hence we can think of one’s preferred choice or behavior as the object of projection rather
than the underlying intensity of that choice.

31This model of taste projection makes assumptions directly on perceived distributions of tastes, and main-
tains that players understand how taste θ translates into decision utility. Alternatively, following Loewenstein,
O’Donoghue and Rabin’s (2003) model of intrapersonal projection, we could assume a player with taste θ
mispredicts the utility of a player with taste θ̃, which ultimately leads to a misperception of the measure of
players that prefer different actions. Suppose that it is known that A is on the right and B on the left. A
taste-type θ whose own location-dependent utility from consuming A is u(A, θ) = −k(1 − θ)2 mispredicts a
θ̃-type’s location-dependent utility from A as ûθ(A, θ̃) = −αk(1 − θ)2 − (1 − α)kd(1 − θ̃)2 where α ∈ [0, 1]
parameterizes the extent of the bias: θ’s perception of θ̃’s utility is a linear combination of θ̃’s true utility and
θ’s own utility—θ projects her own valuation onto θ̃’s. It follows that a θ-type’s perception of the measure
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classes of choice-dependent projection will lead to very different learning outcomes. I define
and differentiate them now.

Definition 1. Suppose players suffer choice-dependent projection where left and right types
respectively believe the measure of right types is λ̂l and λ̂r.

1. (λ̂l, λ̂r) satisfy strong taste projection if λ̂l < 1
2 < λ < λ̂r.

2. (λ̂l, λ̂r) satisfy weak taste projection if 1
2 < λ̂l < λ < λ̂r.

Strong and weak taste projection differ in whether people agree on the majority preference.
Strong projection implies that types disagree; each type thinks her own taste is most com-
mon. Under weak projection, all players correctly acknowledge that right types comprise the
majority.

2.2.3 Naivete: Biased Second-Order Beliefs

I assume that a taste projector is “naive” about her bias: she neglects that those with different
tastes have alternative perceptions of the preference distribution. Instead, she simply thinks
all agents share a common perception.

Assumption 2. (Naivete.) For all θ′ ∈ Θ, a type-θ player believes Ĝ(·|θ′) = Ĝ(·|θ).

This assumption pins down second-order beliefs—beliefs about others’ perceived distribu-
tions. A player uses these second-order beliefs in thinking through how an observee learns
from her predecessors, and hence in rationalizing that observee’s action. Naivete implies that
a player fails to engage with alternative ways of updating beliefs and instead thinks others’
form beliefs as she does. For instance, a risk-averse agent who thinks 90% of investors are
risk averse naively assumes that a risk-neutral agents thinks the same.

Naivete is the assumption differentiating “taste projection” from rational taste-dependent
distributional beliefs, which should arise whenever Bayesian players are uncertain of the dis-
tribution. A rational agent, in contrast, knows precisely the map between an agent’s type and
her belief about the distribution, and hence accounts for the fact that other types interpret

of individuals who prefer A to B in terms of location is the measure of θ̃ such that

θ̃ > − α

1− αθ. (2)

The true measure is that of the set of types that satisfy Equation 2 when the right-hand side of is set to zero.
But when θ > 0—the agent has right-leaning preferences—the right-hand side of Equation 2 is negative. She
thus overestimates the share of players that prefer the right-positioned option. Similarly, when θ < 0, the
left-type θ underestimates the fraction that prefer right-located options. Hence, projection of utility leads to
the same qualitative result that people overestimate the share of payers that prefer their desired action that
I directly assume here.
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evidence differently than she does. More broadly, naivete departs from much of the literature
on non-common priors, which assumes rational expectations about the distribution of priors
across players.32 In this light, this paper provides a first pass at analyzing implications of
neglecting heterogeneity in beliefs.33

2.3 Naive Quasi-Bayesian Best Response

Aside from naive taste projection—incorrect first- and second-order beliefs about G—each
Player nt satisfies the basic epistemic conditions governing play in a Bayesian Nash equilib-
rium of her perceived game, Γ(Ĝ(·|θnt)). First, each player is “quasi-Bayes rational” in that
she maximizes expected payoffs given beliefs formed through putatively correct Bayesian up-
dating using her (false) model of the world.34 Second, each assumes common knowledge of
Bayes rationality within her perceived game. Thus, a naive player correctly predicts others’
strategies—the map σ : Θ×∆(Ω)→ X from one’s type and belief to an action.35 But since
she fails to account for others’ discrepant models, she systematically mispredicts other types’
beliefs. The model of non-rational play simply comprises a particular theory of how players
form the incorrect beliefs against which they optimize.36

It’s worth emphasizing some basic implications of these assumptions. Taste projection in
social-learning environments implies that players who differ in taste draw different inference
from the same history of play. It follows from projection (Assumption 1) that for any t,
πθt = πθ

′
t if and only if Ĝ(·|θ) = Ĝ(·|θ′). Naivete (Assumption 2) further implies that each

agent thinks her “public” belief πθt is commonly shared. Simply put, agents unknowingly draw
32For instance, see Harrison and Kreps (1979) or Morris (1996).
33Little work has been done in this area, however there are many domains where this form of neglect

seems plausible and worthy of further exploration. Nisbett and Ross (1980), when discussing how people fail
to allow for uncertainties in others’ perceptions, make the following point emphasizing the need to address
naivete: “The real source of difficulty does not lie in the fact that human beings subjectively define the
situations they face, nor even in the fact that they do so in variable and unpredictable ways. Rather, the
problem lies in their failure to recognize and make adequate inferential allowance for this variability and
unpredictability.” Although the literature on the false-consensus effect rarely elicits second-order beliefs, the
few papers that do, including Egan, Merkle, and Weber (2014), find that people significantly overestimate
how many share their second-order beliefs, which suggests at least some degree of naivete.

34This modeling technique—assuming people are “quasi-Bayesian”—is often used in a growing literature
in economics studying the implications of systematic biases on inference. While pioneered by Barberis,
Shleifer and Vishny (1998) to study biased inference in asset markets, it has since been adopted, to name
a few, by Rabin (2002), Rabin and Vayanos (2010) to study inference by believers in the “law of small
numbers”, Madarasz (2012) to study information projection, and Benjamin, Rabin and Raymond (2012) to
study inference by non-believers in the law of large numbers.

35In this social-learning environment, this strategy is in fact the rational Bayesian-equilibrium strategy.
36Note that the social-learning game studied in this paper, which is dominance solvable, requires only

a weak solution concept of best response rather than equilibrium. For this reason, I make no additional
assumptions relating to the equilibrium condition of consistent beliefs about strategies—whether players
believe others hold correct beliefs about their strategy.
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distinct beliefs from behavior. These implications suggest two ways in which a taste projector
fails to understand the motives behind the actions she observes: she has incorrect theories of
(1) predecessors’ tastes, and (2) what predecessors have inferred from those moving before
them.37

3 Learning Horizontal Attributes: Preliminaries

In this section and the next, I analyze learning about the horizontal locations of A and B

when their quality difference is known. For simplicity, fix ∆q = 0. Players simply wish to
learn state ω = ζ ∈ {L,R}—whether A is located to the left (ω = L) or right (ω = R) of B.
For example, suppose the costs, q, of two risky technologies are known, but investors want to
learn which is riskier. Suppose the horizontal dimension measures risk, and assets to the left
are riskier, but have potential for higher return, than those to the right. Agents choose their
best guess at the safer option if and only if their risk aversion is sufficiently high (θ > 0).38

The remainder of this section derives players’ choice and inference rules, and discusses how
projection distorts this inference rule. The implications of projection on long-run learning
are analyzed in Section 4.

Private Information. Before acting, each Player nt observes a private signal snt about ω
from which she computes via Bayes’ rule her private belief pnt that ω = R. Following Smith
and Sørensen (2000), I work directly with the distribution of private beliefs. Conditional on
ω, private beliefs are i.i.d. across individuals with c.d.f. Fω; FL and FR are differentiable, and
mutually absolutely continuous with common support supp(F ), so that no signal perfectly
reveals the state of the world.

Assumption 3. (Monotone Likelihood Ratio Property (MLRP).) Let fω denote the density
of private beliefs in state ω. fR(p)/fL(p) is increasing in p.

Assumption 4. (Unbounded Private Beliefs.) For each ω, co(supp(Fω)) = [0, 1].

Assumption 3 implies private beliefs in favor of ω are relatively more likely whenever ω is
true. Assumption 4 implies private beliefs are “unbounded”: from any non-degenerate prior

37Nisbett and Ross (1980) fittingly point out: “One of the most important consequences of this state
of affairs is that when people make incorrect inferences about situational details, or fail to recognize that
the same situation can be construed in different ways by different people, they are likely to draw erroneous
conclusions about individuals whose behavior they learn about or observe.” Here, neglecting the fact that
others hold different perceptions of the taste distribution leads to erroneous conclusions about others’ beliefs.

38Alternatively, the model captures agents learning about new technologies with known prices but unknown
productivities that depend on θ. For example, Munshi (2003) describes hybrid seed with output dependent
on soil or other input characteristics. Farmers wish to learn the seed type yielding the most productive match
with their plot.
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π and for any r̄ ∈ (0, 1), a player moves with positive probability to beliefs at most r̄ and with
positive probability to beliefs at least r̄. Hence, players receive signals ranging from nearly
fully revealing, to uninformative, to (rarely) nearly fully misleading. The “unbounded” signal
structure provides a sharp rational benchmark, as it implies rational agents inevitably learn
ω.39

Public Information and Individual Decision-Making. Prior to making a choice, each Player
nt observes the history ht, and computes public belief πt, the probability of ω = R conditional
on ht. From private belief pnt and πt, she then forms posterior r that ω = R via Bayes’ rule,
r(p, π) = pπ/[pπ + (1 − p)(1 − π)]. Players maximize expected utility given this posterior,
yielding the following decision rule: a right type chooses A iff r(p, π) > 1/2 whereas a left
type chooses A iff r(p, π) ≤ 1/2.

Observers draw inference about Player nt’s private information pnt from her action Xnt

by inverting this decision rule to form cutoffs on pnt: conditional on θnt, Xnt reveals if her
private belief was above or below this cutoff.40 I derive these cutoffs in terms of the public
likelihood ratio, ` := (1− π)/π, which is the inverse of the relative likelihood of state R; the
lower is `, the more likely is ω = R. Now we can re-phrase the decision rule above as a cutoff
strategy.

Lemma 1. Let p(`) := `/(1+`). Fixing public likelihood ratio `, Player nt with private belief
p has the following decision rule:

1. If θnt < 0, then Xnt = A⇔ p ≤ p(`),

2. If θnt > 0, then Xnt = A⇔ p ≥ p(`).

The private-belief threshold p(`) is the private belief that renders type θ indifferent between
A and B given public likelihood ratio `. Intuitively, to choose A, a “left” type must have a
sufficiently strong private belief that A is located to the left—p is sufficiently low—whereas a
“right” type must have a sufficiently strong private belief that A is located to the right—her
p must be sufficiently high.

39An understanding has emerged that unbounded private beliefs lead to the successful aggregation of
information in a variety of models and contexts. Aside from Smith and Sørensen (2000), Acemoglu, Dahleh,
Lobel, and Ozdaglar (2011) and Smith and Sørensen (2008), respectively, show that unbounded beliefs lead
to learning in a large class of networks and sampling regimes. Mossel, Sly and Tamuz (2012) show that
unbounded beliefs lead to learning in a setting with repeated interactions.

40While the solution concept implies that a naive projector correctly knows others’ strategies, she mis-
predicts their private-belief thresholds since she neglects that other types have divergent perceptions of the
public belief. This error, which I highlight in the next subsection, is one of the two ways in which a naive
projector mislearns from others’ actions.
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3.1 Belief Dynamics

This section derives equations describing the evolution of public likelihood ratios 〈`θt 〉. As
explained in Section 2.3, types with distinct perceptions of G draw different inference from
history ht, and thus their public beliefs follow distinct processes. Let `t ∈ R|Θ|+ be the vector
of each type’s public likelihood ratio in t, ordered from least to greatest θ. Let `θt denote a
generic element of `t. When there are just two distinct perceptions, as is the case with choice-
dependent projection, I write `t = (`lt, `rt ), where `t := `t(θ < 0) is a left type’s inference from
ht, and `rt := `t(θ > 0) is a right type’s.

Each process 〈`θt 〉 is described by the initial value `θ1 = 1 (recall players beginning with
common prior π1 = 1/2) and transition equation `θt+1 = ϕθ(at, `θt ) specifying for each t how
public beliefs update after observing actions at given public belief `θt . Since players update
using Bayes’ rule within their mispecified model, ϕθ(at, `θt ) = Ψθ(at, `θt )`θt , where Ψt(at, `θt ) is
the likelihood of observing at in ω = L relative to ω = L. Piecing these definitions together,
beliefs move according to

`θt+1 = ϕθ(at, `θt ) = Ψθ(at, `)`θt = ψθ(at | `θt , L)
ψθ(at | `θt , R)`

θ
t . (3)

ψθ(a | `, ω) in Equation 3 denotes the probability that at people choose A in state ω according
to a θ-type player’s incorrect model, which assumes that all players in t share public belief
`θt and tastes have distribution Ĝ(·|θ). Since behavior of each player in t is independent con-
ditional on ht, the perceived distribution of actions within a period is Binomial(N ,αθ(`, ω)),
where αθ(`, ω) := P̂rθ(Xnt = A | `, ω) is a type θ’s perceived probability that a random player
chooses A given ` and ω. Formally,

ψθ(a | `, ω) =
(
N

a

)
αθ(`, ω)a

[
1− αθ(`, ω)

]N−a
, (4)

and
αθ(`, ω) =

[
1− λ̂(θ)

]
Fω
(
p(`)

)
+ λ̂(θ)

[
1− Fω

(
p(`)

)]
. (5)

The first (second) term of Equation 5 is just the perceived measure of left (right) types times
the perceived probability that a left (right) type takes A specified by Lemma 1. In contrast,
the true probability that of Xnt = A in state ω, denoted α(`, ω), depends on the current
beliefs of all types, `:

α(`, ω) =
[
1− λ̂(θ)

]
Fω
(
p(`θ̃t )

)
+ λ̂(θ)

[
1− Fω

(
p(`θ̃t )

)]
. (6)

Comparing Equations 5 and 6 makes clear the two errors a naive taste-projector commits
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when learning from actions: she (a) mispredicts the frequency of types, ĝ, and (b) wrongly
thinks all types share her public belief `, so she miscalculates other types’ cutoffs p(`), and
thus mispredicts the probability that other types take A.

Remark on “Confounded Learning”. The assumption that ∆q = 0 comes at some loss
of generality. Smith and Sørensen (2000) show that rational observational learning with
heterogeneous preferences may fail even when private beliefs are unbounded. Specifically,
there may exist an interior steady-state belief ˆ̀, which they call a “confounding belief”, such
that ϕ(a, `) = ` for any a ∈ {0, ..., N}; each possible observation is equally likely in ω = L

and ω = R. If beliefs converge to this interior point, which happens with positive probability
whenever ˆ̀ exists, then agents never learn. In my environment, a confounding belief exists
only if |∆q| is sufficiently large. Hence, assuming ∆q = 0 rules out this possibility. However,
∆q = 0 is not a knife-edge case; the non-existence of confounding beliefs is robust.

Lemma 2. Fixing all components of the game Γ aside from ∆q, there is a robust (open,
non-empty) set of quality differences ∆q for which there exist no confounding beliefs.

As a function of the perceived distributions of tastes, there exists ∆̃q > 0 such that for all
∆q ∈ (−∆̃q, ∆̃q), no confounding belief exists.

Appendix A discusses confounded learning in more detail, and derives bounds on ∆q such
that no confounding belief exists. Further, it explores how the basic results derived under
the assumption of ∆q = 0 change if a confounding belief exists. If one does, the logic under
∆q = 0 still holds, and results are identical aside from the possibility of convergence to
the confounding belief. Consequently, results indicating the possibility, or impossibility, of
society reaching some confident belief are unchanged by the presence of a confounding belief.

3.2 Effect of Taste Projection on Updating

This section analyzes comparative statics of λ̂(θ) on the belief-transition equation `t+1 =
ϕθ(a, `t), making clear how taste projection distorts the interpretation of new evidence. The
results established here play an important role in understanding the long-run dynamics stud-
ied in Section 4.

First, one’s current belief and perception of tastes λ̂(θ) dictates the interpretation of
observation at ∈ {0, ..., N}; at is evidence in favor of ω = R whenever `θt+1 = ϕθ(at, `θt ) < `θt .

Lemma 3. For each θ ∈ Θ and perceived public likelihood ratio `θt ∈ R+, there exists a value
κ
(
`θt , θ

)
∈ (0, 1) such that observation at is interpreted as evidence in favor of ω = R if and
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only if (at/N > κ
(
`θt , θ

)
and λ̂(θ) > 1/2) or (at/N < κ

(
`θt , θ

)
and λ̂(θ) < 1/2), where

κ(`, θ) =
(

1 + log
(
αθ(`, L)
αθ(`, R)

)/
log

(
1− αθ(`, R)
1− αθ(`, L)

))−1

. (7)

An investor who thinks most are risk averse must observe sufficiently many choose A in order
to interpret at as evidence that A is safer than B, but one who thinks most are return seeking
must see sufficiently few choose A.

The limit values of κ(π, θ)—values near π = 0 and π = 1—are critical for determining
whether a confident belief is “stable”: if players grows confident, then what they subsequently
observe maintains this confidence. For instance, when λ̂(θ) > 1

2 , limπθ→1 κ(πθ, θ) = λ̂(θ).
This means that when a θ type grows nearly confident that ω = R (i.e., πθ ≈ 1), she must
observe at least λ̂(θ) A’s (on average) for her to remain confident that ω = R (i.e., for πθ

to stay near 1). But if the true fraction right types, λ, is observed and λ < λ̂(θ), then πθ

instead moves downward from 1. Hence, observing exactly what a rational agent expects to
see in ω = R can reduce the biased agent’s confidence in ω = R. This logic is central in
understanding when some constellation of beliefs across types is stable, which is developed
further in Section 4.

Figure 1 demonstrates this effect on beliefs. Suppose N = 100 and at = 75 is observed.
The various curves show the effect of at on beliefs as a function of the current public belief
(x-axis) for various values of λ̂(θ). The y-axis is the (negative) change in the log-likelihood
ratio: log `θt+1 − log `θt . If this value is positive, the agent perceives at as evidence for ω = R;
if it is negative, then at supports ω = L.
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Figure 1: Negative change the in public log-likelihood ratio, − log Ψθ(π), as a function of the
current belief, π, after observing action at/N = .75 for various values of λ̂(θ). A type-θ
player interprets at as evidence for ω = R if and only if − log Ψθ(π) > 0.

Another implication of Lemma 3, evident from Figure 1, is what I call the perceived-
majority effect: two agents who disagree on the majority preference may draw precisely
opposite interpretations from the same observation.

Proposition 1. (Perceived-Majority Effect.) For any `θt ∈ R+, if at/N > λ̂(θ), then `θt+1 <

`θt if and only if λ̂(θ) > 1
2 . Similarly, if at/N < 1 − λ̂(θ), then `θt+1 > `θt if and only if

λ̂(θ) > 1
2 .

Corollary 1. Suppose N = 1. If at = 1 then `θt+1 < `θt if and only if λ̂(θ) > 1
2 . Similarly, if

at = 0 then `θt+1 > `θt if and only if λ̂(θ) > 1
2 .

Proposition 1 states that when a sufficiently large proportion of agents choose X in t, people
who disagree on the majority preference will disagree on the interpretation of this evidence.
If 75% of investors buy A, then one who thinks 60% are risk averse concludes A is likely
safe, but another who believes only 40% are risk averse thinks A is risky. The corollary,
which assumes agents act in single file (N = 1), is even more straightforward: an individual
always interprets action A as evidence for ω = R if and only if she believes that the majority
of players are right types. This result has very different implications depending on whether
people suffer strong or weak projection (Definition 1); left and right types disagree on which
hypotheses action A supports if and only if they suffer strong projection.

The next result, which I call the variance effect, describes how λ̂(θ) affects the magnitude
of changes in beliefs.

19



Proposition 2. (Variance Effect.) Suppose N = 1. For any `θt ∈ R+ and at ∈ {0, 1},
|`θt+1 − `θt | strictly increasing in λ̂(θ) on

[
1
2 , 1

]
and strictly decreasing in λ̂(θ) on

[
0, 1

2

]
To interpret this result, note that λ̂(θ)

[
1 − λ̂(θ)

]
is type θ’s perception of the variance in

tastes. Hence, Proposition 2 implies that as one’s perceived variance in types decreases, her
beliefs change by a greater amount after any observation. As perceived variance decreases, a
player becomes more confident about the tastes of those whom she observes, so their choices
are seemingly more precise signals of the their private information. If she overestimates the
likelihood that predecessors are right types, then observing A, say, is interpreted as overly
strong evidence that A is optimal for right types.

This result has important implications under weak projection. In this case, the right-
type belief changes by more than the rational belief after any action—beliefs are volatile,
and over-responsive. The left-type belief, however, changes by too little relative to rational
updating—they are relatively conservative, and under-responsive. In terms of an example, a
very risk-averse investor (a right type) reacts too strongly to a predecessor’s choice since she’s
too confident that it reflects her own best investment strategy. But a risk-neutral investor (a
left type), is too skeptical of the evidence—if she thinks it’s roughly equally likely that her
predecessor was risk averse or risk neutral, then his choice tells her relatively little about her
own optimal strategy.

Figure 2 demonstrates both the “single-file” majority and variance effects. The plot shows
the effect of observing choice A today on tomorrow’s belief, πθt+1, as a function of today’s
belief, πθt . Each curves assumes a different values of λ̂(θ). Comparing λ̂(θ) = 0.25 to the
other cases highlights the perceived-majority effect: λ̂(θ) < 1/2 implies tomorrow’s belief
is lower than today’s. We see the variance effect among the curves with λ̂(θ) > 1/2: the
magnitude of changes in beliefs increases with λ̂(θ).
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Figure 2: Next-period’s public belief πθt+1 as a function of the current public belief, πθt , as-
suming choice A is observed in t. The 45◦-line is plotted for reference.

4 Learning Horizontal Attributes: Long-Run Beliefs

Building on the setup of Section 3, this section investigates the effect of taste projection on
long-run beliefs and behavior when players learn about horizontal locations. I show that
when the bias is strong, taste projection always leads to inefficient herds and fully-confident
beliefs. But when it is weak, it leads to cyclical behavior and persistently fluctuating beliefs.

To arrive at these conclusions, Section 4.1 introduces the possible learning outcomes under
projection, and 4.2 derives conditions on players’ perceptions of λ that determine which
equilibrium beliefs are stochastically stable. These conditions hold for a general model of
perceptions, where each of an arbitrary finite number of types may hold a distinct perception
λ̂(θ). But to build intuition for the particular way in which learning fails as a function of
the extent of projection, Sections 4.3 and 4.4 assume a simple two-type setting. There, a left
and right type have distinct perceptions λ̂ = (λ̂l, λ̂r) and beliefs, `t = (`lt, `rt ). Section 4.5
discusses how these “two-type” results generalize to cases with many perceptions.

4.1 Potential Learning Outcomes

I first introduce terminology for the various learning outcomes that can occur. Learning
among type-θ players is (1) complete if πθt converge almost surely to the truth; (2) incorrect
if πθt converges to certainty in a false state; (3) incomplete if πθt does not converge to certainty
in any state. Learning fails for type θ if it is incorrect or incomplete. Finally, I say universal
learning is complete if learning is complete for all θ ∈ Θ. Otherwise, universal learning fails.
Without loss of generality, I assume ω = R—action A is located on the right—so complete
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learning for type-θ entails Pr(limt→∞ π
θ
t = 1) = 1, or, in terms of the public likelihood ratio,

`θt
a.s.−→ 0.41

As a benchmark, if people are fully-rational (λ̂(θ) = λ for all θ ∈ Θ), then they necessarily
learn the true state in the long run.

Proposition 3. If λ̂(θ) = λ for all θ ∈ Θ, then learning is complete: πθt
a.s.−→ 1 for all θ ∈ Θ.

This result—first derived in Smith and Sørensen (2000)—follows from the martingale feature
of rational public beliefs. Provided λ̂(θ) = λ for each θ, `θt is identical across θ in all t, and
〈`θt 〉 is a martingale conditional on state ω = R. By the Martingale Convergence Theorem,
〈`θt 〉 converges almost surely to some random variable `θ∞ := limt→∞ `

θ
t .

With projection, however, public beliefs do not form a martingale:

Lemma 4. The likelihood-ratio processes 〈`θt 〉 is a martingale conditional on state R if and
only if λ̂(θ) = λ for all θ ∈ Θ.

As long as λ̂(θ) 6= λ for some θ ∈ Θ, all players mispredict the distribution of actions in t.
The perceived probability of outcome at in ω = R according to any θ’s model, ψθ

(
at | `θt , R

)
,

is generically not equal to the true probability. The true probability depends on all types’
beliefs, `t, but a niave type θ thinks it depends solely on `θt .

Lemma 4 implies we cannot rely on standard martingale methods to study the limit
properties of the joint-belief process 〈`t〉. To proceed, I first identify the set L ⊂ R|Θ|+

of “candidate equilibria” such that if biased beliefs converge to a point belief, then these
limit points must lie in L .42 Second, I evaluate whether these candidate equilibria are
stochastically stable.

It turns out that L is the set of confident beliefs: ` such that for each θ, `θ ∈ {0,∞}.
This means that if beliefs never converge to a fixed interior belief where people remain
uncertain. To see this, first note that conditional on state ω = R, the process of actions and
beliefs 〈at, `t〉 is a discrete-time Markov process on {0, ..., N} × R|Θ|+ . Transitions along the
θ-dimension given by

`θt+1 = ϕθ
(
a, `θt

)
with probability ψ(a, `t) (a = 0, ..., N), (8)

where ϕθ(a, `) is the belief-transition function introduced in Section 3.1 (Equation 3) and
ψ(a, `) is the true probability of observing a at `. Granted stationary limits exist, Theorems
B.1 and B.2 of Smith and Sørensen (2000) determine `θ∞ for a such a Markovian belief process

41Although much of the analysis is in terms of the public likelihood ratio, I present some results in terms
of the sequence of beliefs πθt for sake of intuition.

42The term equilibrium, in this context, refers to a profile of beliefs ` which is a fixed point of the belief
process.
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with state-dependent transitions. Since private beliefs are continuously distributed and the
transition functions ϕθ(a, ·) are continuous for all a, it follows from their result that any
ˆ̀θ ∈ supp

(
`θ∞
)
is a fixed point of the Markov process. Hence, for each component ˆ̀θ of

ˆ̀∈ supp(`∞) and all a ∈ {0, ..., N},

ˆ̀θ = ϕθ
(
a, ˆ̀θ

)
. (9)

Given the assumption of unbounded private beliefs, the only fixed points of process 8, and
thus the only possible stationary beliefs, are confident beliefs.

Lemma 5. Suppose that there exists a real, nonnegative random variable `θ∞ such that `θt
a.s.−→

`θ∞. Then supp
(
`θ∞
)
⊆ {0,∞}.

From Lemma 5, L = {0,∞}|Θ|. For sake of presenting key results in terms of beliefs π ∈ [0, 1],
rather than likelihood ratios ` ∈ R+, let Π be the set of candidate equilibria in belief space.
Lemma 5 implies any long-run stationary belief lies in Π := {0, 1}|Θ|.

We have now identified our candidate long-run stationary equilibria, Π. But to which of
these equilibria will society converge? The next section (4.2) shows that agents’ perceptions
of population preferences, dictate which, if any, of these beliefs are asymptotically stable.

4.2 Stability of Confident Beliefs

This section derives, as a function of mispredictions, a condition specifying when a candidate
equilibrium belief is locally stable. Section 4.2.1 derives sufficient conditions on the Markov
process (8) for stability, and Section 4.2.2 establishes from these conditions a stability crite-
rion based directly on the primitives of the model: each agent’s perception of others’ tastes,
λ̂(θ).

4.2.1 Local Stability of the Belief Process

Let ˆ̀∈ L denote a fixed point of process 8 with generic element ˆ̀θ.

Definition 2. Fixed point ˆ̀ is stable if for any open ball about ˆ̀, N (ˆ̀), there is a positive
probability that `t ∈ N (ˆ̀) for all t ∈ N provided `1 ∈ N (ˆ̀).

Stability means that if the belief process enters a neighborhood of the fixed point, then it
will remain in that neighborhood with positive probability. Stability conditions follow from
the logic of stability within linear systems. Although the belief process is nonlinear, near
the fixed point we can approximate the process by its first-order Taylor series expansion;
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stability is assessed locally by applying standard linear-system criteria to this “linearized”
approximation.

Formally, near fixed point ˆ̀, type θ’s belief process 〈`θt 〉 is well approximated by the
following stochastic difference equation: starting at (at, `θt − ˆ̀θ), the continuation is(
at+1,

∂
∂`
ϕθ(at, ˆ̀)(`θt − ˆ̀θ)

)
with chance ψ(at, ˆ̀). That is, the continuation is approximately

the first-order Taylor expansion of ϕθ
(
at, `

θ
t

)
about fixed point ˆ̀θ. Now, for any linear process

〈yt〉, where yt+1 = bayt with chance pa for a = 0, 1, ..., N , we can write yt = b
I0(t)
0 × ...×bIN (t)

N y1

where Ia(t) counts the realization of a’s in the first t − 1 steps. Since Ia(t)/t → pa almost
surely by the Strong Law of Large Numbers, the product χ := bp0

0 × ...×b
pN
N fixes the long-run

stability of the stochastic system 〈yt〉 near fixed point y = 0:

lim
t→∞

yt = lim
t→∞

(bp0
0 × ...× b

pN
N )t y1 = lim

t→∞
χty1. (10)

Clearly from Equation 10, the linear process converges to the fixed point 0 if and only if the
product χ < 1. The analog of χ for the linearized belief process in the neighborhood of ˆ̀ is

χθ(ˆ̀) :=
N∏
a=0

(
∂

∂`
ϕθ
(
a, ˆ̀θ

))ψ(a,`)

. (11)

Accordingly, χθ(ˆ̀)—which I call the stability coefficient of type θ’s beliefs near ˆ̀—determines
the local stability of the original nonlinear system (8) near ˆ̀.

Lemma 6. Suppose ˆ̀∈ L . ˆ̀ is stable if χθ(ˆ̀) < 1 for all θ ∈ Θ, and unstable if for any
θ ∈ Θ, χθ(ˆ̀) > 1.

Lemma 6 is simply an extension of Smith and Sørensen’s (2000) Theorem 4, which estab-
lishes this stability criterion for an arbitrary Markov process like (8) so long as continuation
functions ϕθ(a, ·) and transition probability functions ψ(a, ·) are C1 (once continuously dif-
ferentiable). While they use this condition to show stability of interior fixed points of the
rational learning process, I use it to demonstrate both the instability of correct beliefs and
the stability of false beliefs within the biased learning model.

4.2.2 Characterization of Confident Equilibria

I now derive from Lemma 6 a stability criterion based directly on the primitives of the
model—people’s perceptions of others’ tastes. This proposition shows that we can asses the
stability of an equilibrium belief simply by comparing what people expect to observe at that
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belief with what they actually observe.43

This requires some final pieces of notation. Let F̂θ : X × R+ → [0, 1] be θ’s perceived
probability of observing action X given `θ, and let F : X × R|Θ|+ → [0, 1] be the true
probability of observing actionX given belief profile `. Additionally, letMθ : R+ → X denote
the the expected majority action according to θ’s model at `,Mθ(`) := arg maxX∈X .F̂θ(X, `)

Proposition 4. Let ˆ̀∈ L be a fixed point of the joint-belief process (8).

1. ˆ̀ is a stable if for all θ ∈ Θ, F̂θ

(
M(ˆ̀θ), ˆ̀θ

)
< F

(
M(ˆ̀θ), ˆ̀

)
.

2. ˆ̀ is unstable if for any θ ∈ Θ, F̂θ

(
M
(

ˆ̀θ
)
, ˆ̀θ
)
> F

(
M(ˆ̀θ), ˆ̀

)
.

F (A, ˆ̀) is the long-run frequency of action A if all players beliefs are fixed at ˆ̀. Proposi-
tion 4 states that, given long-run behavior F (A, ˆ̀), stationary-equilibrium belief ˆ̀ is stable if
all players observe a greater share choosing their anticipated majority action than expected;
it is unstable if any player observes fewer than expected choosing her anticipated majority
action.

For example, suppose a risk-averse agent believes most seek the safer asset (λ̂r > 1
2),

and grows nearly confident that A is safe. To remain confident, the fraction of times others’
choose A must exceed λ̂r; if not, she necessarily becomes less confident over time. Essentially,
observing a larger majority share than expected only reinforces a player’s hypothesis about
the action optimal for the majority taste. The concept is similar self-confirming equilibrium
(e.g., Fudenberg and Levine, 1993): an incorrect belief may be stable so long as the behavior
of those best responding to that belief supports the false hypothesis. Even if an investor
wrongly concludes that A is safe, so long as more people choose it than she anticipates, she’ll
continue to believe it is safe.

An implication of Proposition 4 is that not all types can reach identical beliefs in the long
run.

Proposition 5. If people project tastes, i.e., there exist θ, θ′ such that θ > θ′ and λ̂(θ) >
λ > λ̂(θ′), then for each π̂ ∈ {0, 1}, Pr(limt→∞ π

θ
t = π̂ ∀ θ) = 0. That is, there is no long-run

agreement across types.

An immediate, but important, corollary is that not all agents can learn the truth.
43Gagnon-Bartsch and Rabin (2014) study a similar issue of stability in a model of biased social learning

in which players draw inference from the history of play, but wrongly assume the behavior of each person
they observe reflects solely that person’s private information. In some settings, the behavior of a generation
confident in the true state can lead observers to beliefs far from the truth: confident, correct beliefs are
unstable. The “inferential naivete” bias in Gagnon-Bartsch and Rabin (2014) was first studied in a more
standard environment by Eyster and Rabin (2010), and a similar error where people neglect the redundancy
in information when learning socially is analyzed by DeMarzo, Vayanos and Zwiebel (2003).
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Corollary 2. If people project tastes, i.e., there exist θ, θ′ such that θ > θ′ and λ̂(θ) > λ >

λ̂(θ′), then universal learning fails.

Since rational agents necessarily learn the truth in this setting, Corollary 2 demonstrates a
discontinuity of rational learning. Adding any degree of taste projection implies some agents
necessarily fail to learn. The basic intuition is that if beliefs grow close to the truth—A

is optimal for the majority taste—then society observes roughly λ choose A. But people
with the majority taste, who overestimate how many share this taste, expect to observe a
frequency of A’s strictly greater than λ. By Proposition 4, their beliefs necessarily become
less confident over time.

The mere fact that some agents necessarily fail to learn tells us little about what agents
do come to believe or their long-run behavior. Within a simple two-type setting, the next two
subsections use Proposition 4 to answer these questions, which depend on whether projection
is strong or weak (Definition 1). Section C of the Appendix also uses Proposition 4 to
show how learning may fail when agents suffer alternative distributional errors distinct from
projection, such as a false sense of uniqueness.

4.3 Strong Projection

This section (4.3) and the next (4.4) assume agents suffer “choice-dependent” projection.
Hence, there are just two distinct perceptions of λ, λ̂ = (λ̂l,λ̂r), and two distinct belief
sequences, `t = (`lt, `θ). This section studies learning under strong projection and the next
analyzes weak (Definition 1). In each case, I identify Π∗(λ̂l, λ̂r)—the set of stable equilibrium
beliefs given λ̂l, λ̂r—and show specifically how and why learning fails.

The proposition below shows that if each type thinks her taste is most common (strong
projection), then people all choose the same action in the long run. Consequently, each grows
confident that this action is optimal for her taste, resulting in polarized beliefs across types.
To see this, consider two types of investors—risk averse (“right types”) and risk neutral
(“left types”)—who each think their type is most common; say, λr = 0.8, and λl = 0.4,
when in truth, λ = 0.6. In a large market—many act per period—agents have very different
expectations about first-period purchases: when A is safe, the risk averse expect around
80% to buy A, whereas the risk seeking expect about 40% to do so. If in fact A is safe,
they observe 60%. Like in Proposition 1, the risk averse perceive this as evidence that A is
safe, but the return seeking think it means A is risky. With these opposing beliefs, nearly
all investors best respond in the next round by buying A, which only further polarizes the
investors’ beliefs. Eventually, all return seekers grow confident in the incorrect state.

Proposition 6. Under strong taste projection, the following are true:
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1. Π∗(λ̂l, λ̂r) = {(0, 1), (1, 0)}.

2. When N is finite, πrt converges almost surely to either 0 or 1, and each outcome arises
with positive probability. If πrt converges to 0 (1), then πlt almost surely converges to 1
(0), and all players take action A (B) in the long run.

3. As N →∞, (πlt, πrt ) converges almost surely to (0, 1); the majority type learns correctly,
but the minority type learns incorrectly. All players take action A in the long run.

The intuition is simple, and follows along the lines of the example above. Eventually some
action, say A, earns a majority following. Projection implies that, absent strong contrary
signals, each player believes it’s the majority action that best suits her taste. As such,
the frequency at which A is chosen grows, reinforcing an observer’s belief that A suits the
more common taste—and hence her taste. It’s worth noting that because players are naive,
they don’t understand that the herd results from opposing beliefs. While they think this
“anomalous” herd on A is a highly unlikely event, A is any player’s clear best response. The
equilibrium is essentially self confirming: behavior following from polarized beliefs reinforces,
and never contradicts, false beliefs.

With a finite number of players moving each round (N), either action may grow most
popular in early periods. Hence, the action on which players inevitably herd is random.44

Society suffers a form of “social” confirmation bias, where initial evidence has a lasting
influence on long-run beliefs. Since people never expect a herd, the surprisingly uniform
behavior moves them too quickly toward confident beliefs.45 While either herd is possible,
the majority type learns correctly more often when λ or N increases—these variables increase
the likelihood that the action optimal for the majority taste, A, is most popular among early
periods. As N →∞, agents almost surely herd on A.

Strong projection leads to an extremely robust form of herding. With heterogeneous
preferences, a “herd” is typically defined (e.g., Smith and Sørensen, 2000) by players of each
type acting identically—rational “herds” do not preclude heterogeneity in behavior. With
strong projection, however, players of every type act identically, eliminating heterogeneity
in long-run behavior. In such a “uniform herd”, agents inefficiently over adopt the more
popular action. Sorensen (2006) finds an example of this among workers within an academic
department who observe others’ choice of health-care plans before selecting their own. While

44In simulations of the model with signal densities fR(p) = 2p and fL(p) = 2(1 − p) and parameters
λ = 0.75, λ̂r = 0.9, λ̂l = 0.4 and N = 1 (agents move in single file), the majority type learns correctly
roughly 80% of the time.

45See Rabin and Schrag (1999) for a discussion of confirmatory bias in individual learning settings. Eyster
and Rabin (2010) also show how biased social learning causes society to grow too confident too quickly in
which ever state initial evidence supports.
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employees differ significantly in their preferred plan characteristics, they tend to herd on a
single plan.46 Many employees later switch, reflecting the heterogeneity in the optimal match.

Uniform herding implies that observing others can be socially harmful. For sufficiently
precise private signals, people are necessarily worse off by observing others than if they simply
followed private information. Depending on which action people herd, when observing others
a share ν ∈ {1 − λ, λ} correctly learns, while fraction 1 − ν chooses the inferior option.
Instead, an agent choosing solely on private information does so correctly with probability
ρ := 1− FR(1/2). So long as

ρ >
λE
[
u(A, θ)− u(B, θ) | θ > 0

]
λE
[
u(A, θ)− u(B, θ) | θ > 0

]
+ (1− λ)E

[
u(B, θ)− u(A, θ) | θ < 0

]
=

λE
[
θ | θ > 0

]
λE
[
θ | θ > 0

]
− (1− λ)E

[
θ | θ < 0

] , (12)

observing others reduces social welfare. With only two types, θ ∈ {−1, 1}, condition 12
reduces to ρ > λ: social learning is harmful whenever the probability that an agent has a
correct signal exceeds the chance a random other shares her taste. Finally, the welfare loss
from social learning is asymmetric, as it falls entirely on agents with a particular taste. For
large N , the burden falls entirely on those with the minority taste.

It’s worth noting why strong projection precludes agents from converging to identical
beliefs.47 If society is nearly certain that ω = R, then fraction λ chooses A. Left types,
who think they’re most common, think this suggests ω = L. This reduces their confidence
that ω = R. More generally, since biased beliefs do not form a martingale, they display
predictable drift. Near the truth ˆ̀ = (0, 0), both `lt and `rt are strict submartingales: they
increase in expectation over time, and hence drift away from the truth.

Lemma 7. Assume strong taste projection. There exists a neighborhood N about the truth
ˆ̀= (0, 0) such that for all (`lt, `rt ) ∈ N , E[`rt+1 | `lt, `rt ] > `rt and E[`lt+1 | `lt, `rt ] > `lt.

In terms of Proposition 4, near ˆ̀ = (0, 0) each player sees fewer than expected choose the
action she thought would be most popular. Figure 3 shows the drift in beliefs for all regions
of the joint-belief space.48 Beliefs drift away from each fixed point where opposing types

46Employees only observe choices of others’ within their department. Interestingly, the “herd” plan varies
across departments.

47This is a direct consequence of Proposition 5. This discuss provides intuition for that proposition and
why different types fail to agree in the long run.

48As shown in Figure 3, there are four regions of “belief space”, [0, 1]2, with distinct martingale properties.
The label (+,−), for example, implies that `lt is a submartingale and `rt is a supermartingale when restricted
to the indicated region of R2

+. In general, there exists a function Ll : R+× [0, 1]→ R+ such that if λ̂l > 1/2,
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agree, π̂ = (0, 0) and π̂ = (1, 1), but drift toward confident disagreement.
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Figure 3: Belief “phase diagram” for Strong Taste Projection.

4.4 Weak Projection

Although “strong” projection suggests a clear logic for herding, uniform behavior is not a
general consequence. When projection is weak enough so that people agree on the majority
preference, players never settle on a fixed belief nor herd on a single action.

Proposition 7. Assume weak taste projection. Π∗(λ̂l, λ̂r) = ∅: There exists no stable fixed
point for `lt or `rt .

Proposition 7 implies that beliefs of each type almost surely fail to converge to a fixed value.
This results from agents never observing a pattern of behavior consistent with either state
given their mispecified model. As such, beliefs perpetually oscillate from favoring one state
to the other. Since an agent’s belief forms a martingale with respect to her own model,
she wrongly anticipates that her opinion will eventually settle down. Instead, whenever it
begins to settle down, she observes new, “shocking” evidence (with respect to her model)
that pushes her back toward uncertainty.

then E[`lt+1 | `t] > `lt ⇔ `rt > Ll(`lt, λ̂l), and if λ̂l < 1/2, then E[`lt+1 | `t] > `lt ⇔ `rt < Ll(`lt, λ̂l). Similarly,
there exists a function Lr : R+ × [0, 1]→ R+ such that if λ̂r > 1/2, then E[`rt+1 | `t] > `rt ⇔ `lt < Lr(`rt , λ̂r),
and if λ̂r < 1/2, then E[`rt+1 | `t] > `rt ⇔ `lt > Lr(`rt , λ̂r). Both Ll and Lr are monotonic in `θ and intersect
exactly once. Figure 3 (and also Figure 4) show Lθ in units of probabilities rather than likelihood ratios.
That is, the figures plot Pθ(π) := Lθ

(
π/(1− π), λ̂(θ)

)
/
[
1 + Lθ

(
π/(1− π), λ̂(θ)

)]
.
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The rationale stems from the “variance effect” discussed in Section 3.2. Since right types
overestimate their frequency, λ̂r > λ, and consequently underestimate variance in tastes,
they think actions reveal more private information than they do. In particular, when a
right type observes a “contrarian” action—one that deviates from the most likely choice—
she overweights the possibility that it’s due to a player who shares her taste but has strong
information contrary to the current public opinion.49 Importantly, contrarian actions are
overattributed to private information rather than taste.

To see this in terms of the investment example, suppose traders initially believe A is safe:
`θt ≈ 0 for each θ. At first, they observe a market share for A equal to λ, the share of risk-
averse traders. A risk-averse investor, however, expects a share near λ̂r > λ and thus observes
roughly λ̂r − λ more contrarian choices (in frequency) than anticipated. She must form a
theory explaining this excess demand for B. Within her model, the most likely scenario is
that a significant share of fellow risk-averse investors received strong private information that
B is in fact safer. From this, the risk-averse trader concludes that society was likely misled
when it previously decided that A is safer than B.

This logic implies that when both types have beliefs near the truth, the belief of the
majority type `rt evolves as a submartingale. That is, `rt drifts away from zero toward less
confident beliefs. On the other hand, a left type observes more A’s, and thus fewer con-
trarian actions, than anticipated. This reinforces her belief in ω = R. Locally, `lt is a
supermartingale—left-type beliefs move toward zero in expectation.

Lemma 8. Assume weak taste projection. There exists a neighborhood N about the truth
ˆ̀= (0, 0) such that for all (`lt, `rt ) ∈ N , E[`rt+1 | `lt, `rt ] > `rt and E[`lt+1 | `lt, `rt ] < `lt.

Lemma 8 confirms that the two types’ beliefs move in opposite directions when both are
initially quite certain of the state, but how do these dynamics play out in the long run? Like
`rt , `lt must eventually move away from 0. Suppose instead that `lt remained near 0 for all
t. Since (1) `rt is a submartingale conditional on `lt = 0 and (2) the only fixed points of 〈`rt 〉
are 0 and ∞, it must be that `rt must diverge to infinity. Hence, the frequency of action B
converges to 1. But a left type is aware she is in the minority; an arbitrarily long herd on B
must eventually cause her to think ω = L. This logic makes clear that while right-type beliefs
move from favoring ω = R to ω = L, their resulting behavior compels left types to similarly
revise their beliefs. But once all agree that ω = L, the above logic repeats: right-type beliefs
drift back toward uncertainty. No matter which state society agrees on, no action ever gains
as much support as the majority anticipates. As a result, the majority never grows confident
of their optimal action.

49In this setting, a contrarian action is defined relative to an individual’s belief: action Xnt is contrarian
if it’s the action least likely observed according to an observer with belief `θt .
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Figure 4 depicts this logic by plotting the expected drift in biased beliefs for all regions of
the joint-belief space. Beliefs drift away from each fixed point and do so in a particular way:
behavior near each potential equilibrium reinforces the beliefs of some types, but deteriorates
the confidence of others.
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Figure 4: Belief “phase diagram” for “weak” taste projection.

Weak projection generates persistent opinion fluctuations where society alternates be-
tween supporting ω = R—where most people choose A—and supporting ω = L—where
most choose B. As such, behavior resembles “fads”. Although common, such behavior is not
well explained by rational learning models in settings with strongly connected networks or
“unbounded” private information. For example, fad-like behavior arises in Çelen and Kariv
(2004) only if rational players both observe a subset of predecessors and receive boundedly-
informative private signals. Acemoglu, Como, Fagnani and Ozdaglar (2012) suggest a naive
model of learning in a network where some agents are “stubborn” and never update their
beliefs. Acemoglu, et al. (2012) suggest that such models help explain persistent fluctuations
in political opinion, documented by Kramer (1971) and Cohen (2003). In my model, the
public is surprised how little support a policy receives, rationalizing that if the policy was in
fact optimal for the majority, it would garner more support. But when society changes its
mind, the alternative policy also fails to earn sufficient support. People perpetually mistake
the “surprising” amount of heterogeneity in choice for revelation of new private information.

Weak projection harms social welfare whenever beliefs spend a significant proportion of
time below 1/2. To determine when this occurs, we must study the long-run distribution
of beliefs, which depends on the relative magnitudes of the mispredictions, λ̂l and λ̂r. Near
ˆ̀ = (0, 0), λ̂r dictates how quickly `rt moves away from 0, while λ̂l dictates how quickly
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`lt moves toward 0. A particularly interesting case arises when λ̂r is sufficiently close to λ.
Specifically, when λ̂r ∈ (λ, λ̄r) where λ̄r := 1−

(
1−λ
λ

)
λ̂l, simulations confirm that each belief

process oscillates between increasingly confident beliefs in the two states. Figure 5 depicts a
simulated sample path of log `θt in this case. When society is confident that ω = R, all choose
optimally—fraction λ, all right types, take A. But when confident that ω = L, all choose
incorrectly—fraction 1−λ, all left types, take A. Figure 6 displays these swings in behavior:
the frequency of choice A oscillates between λ and 1− λ.

When society has such “cyclical beliefs”, expected welfare is lower than if people simply
ignored others’ actions. Roughly 50% of the time, a player forms nearly confident, but false,
beliefs. But when relying solely on private infromation, agents necessarily choose correctly
more than 50% of the time. Observing others makes society worse off, on average.
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Figure 5: Sample path of log-likelihood ratios for λ = 0.75, λ̂l = 0.55, and λ̂r = 0.8.
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4.5 Biased Learning Under General Taste Projection

This section characterizes learning outcomes when misperceptions may differ across an ar-
bitrary finite number of types. The previous two sections assumed “choice-dependent” pro-
jection, which imposed that all players on a particular side of the taste spectrum share a
common perception of λ. The only assumption on perceptions I make here is Assumption 1,
so λ̂(θ) is monotonically increasing in θ.

Proposition 8 provides necessary and sufficient conditions on perceptions for the existence
of stable equilibria. Let W denote the share of types who wrongly think left types comprise
the majority. Let θ̃ := arg maxθ λ̂(θ) subject to λ̂(θ) < 1/2 denote the right-most type who
believes left types comprise the majority. If θ̃ exists, then W = G(θ̃); otherwise W = 0. Let
θ = min Θ and θ = max Θ.

Proposition 8. A stable equilibrium exists if and only if

1. θ̃ < 0 and W + λ > max
{

1− λ̂(θ), λ̂(θ)
}

2. θ̃ > 0 and 2− (W + λ) > max
{

1− λ̂(θ), λ̂(θ)
}

The left-hand side in each inequality of Proposition 8 is the measure of agents who believe
it is optimal to follow the majority action. The right-hand side is the most biased perception
of the size of the majority. So long as all agents observe more people than they anticipated
choosing a single action, then the equilibrium is stable. In any stable equilibrium, it is
always the extreme types (those far from indifferent) who (rightly or wrongly) follow the
majority action. They are the types who most overestimate how many share their taste.
Interestingly, it’s those with the most opposed tastes who choose identically. In contrast, it’s

33



those with weak preference over location who concede that they have less-common preferences
and choose the minority action. Turning to equilibrium beliefs, θ̃ represents a turning point
in beliefs: all types to one side of θ̃ agree on the state, while those on opposite sides disagree.

Proposition 8 generalizes the findings of “strong” and “weak” projection to a broad class
of taste-dependent perceptions, λ̂. Strong projection implies all agents choose identically.
Here, relative to the efficient outcome, any stable equilibrium requires that too many agents
adopt the popular action. “Over-adoption” of the majority choice is a general implication of
a stable projection equilibrium, and strong projection demonstrates a particular limit case in
which all choose a single action. Additionally, so long as each type correctly recognizes the
majority preference, λ̂(θ) > 1

2 for all θ ∈ Θ, then results match those of the weak-projection
case: there exist no stable equilibrium beliefs. As such, the two-type examples in Sections 4.3
and 4.4 accurately capture the essence of learning with projection, albeit in extreme fashion.

5 Learning About Quality

There are natural settings where beliefs about commonly-valued quality influence choice as
much uncertainty over horizontal location. For instance, consider people learning about which
candidate to support in a primary election. Early poll results reveal information about both
a candidate’s ideology and her competence. If a voter infers a large difference in competence
between two candidates, she may choose to support the more competent one even if he is the
one further from the voter’s preferred ideology. In this section, I consider such settings where
quality differences may be large enough so that all players prefer the same option despite
heterogeneity in tastes. How does taste projection distort inference about quality?

I explore two ways in which taste projectors misjudge relative quality. With two types,
if people display strong projection, then society necessarily comes to believe that the quality
difference between A and B is as large as possible. Such mislearning both arises from and
perpetuates a herd in which all players choose the option optimal for the majority taste. With
a continuum of types, stable long-run behavior implies a negative relationship between tastes
and perceived quality: people who most prefer the horizontal attributes of A underestimate
the quality of A relative to those who prefer the horizontal attributes of B.

5.1 Preliminaries

States. Players wish to learn both (1) the location ζ ∈ {L,R}, and (2) the quality difference
∆q ∈ D of A relative to B. (ζ,∆q) ∈ {L,R} × D. Let ∆ := minD and ∆ := maxD. Since
u(qX , zX) = qX −k(zX − θ)2, all agents prefer A over B if ∆q > ∆̂ := 4kθ, where θ = max Θ;
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all prefer B if ∆q < −∆̂. I call state ω = (ζ,∆q) universal whenever |∆q| > |∆̂| so all prefer
the same action. Assume universal states are possible: ∆ > ∆̂ and ∆ < −∆̂. Players expect
to observe long-run uniform behavior if and only if ω is universal.

Private Information. For simplicity, I assume a unidimensional signal structure in which
each player receives a signal informing them her action is optimal for her own taste. For each
θ, let Ωθ ⊂ Ω denote the set of states in which type θ weakly prefers action A. Each type-θ
player receives an i.i.d. private belief that ω ∈ Ωθ drawn according to c.d.f. FA if ω ∈ Ωθ

or c.d.f. FB otherwise. FA and FB meet the same assumptions as FH and FL, respectively
(Assumptions 3 and 4). While private information alone leads to coarse inference over Ω,
the signal structure allows agents to discern which action is optimal for each type when
observing others. I assume this signal structure, which implies that agents follow decision
rules analogous to those derived in Section 3, only for ease of exposition. The structure still
allows rational agents to learn the optimal action, and I emphasize below that it does not
drive any of the incorrect-learning results.

5.2 Quality Distortions with Two Types

In this section, I show that if two types suffer strong projection, then society necessarily
comes to believe in a universal state. Thus, differences in vertical quality are always weakly
exaggerated.

Suppose there are two types—a left type (θ = −1) and a right type (θ = 1). λ := Pr(θnt =
1) denotes the fraction of players with right-leaning tastes.50 With two types, observing a
history generates public beliefs over a partition of Ω comprised of four elemnts. Essentially,
players can only determine which action is optimal for each type. Hence, each partition
element—denoted ΩXX′ for X,X ′ ∈ {A,B}—contains all states in which it is optimal for
left types to chose X and right types to choose X ′. Let πθt (XX ′) denote type θ’s belief that
the state is in ΩXX′ after observing history ht.

The following proposition characterizes long-run beliefs, and demonstrates that left and
right types never agree on the location state, but always agree that one action has superior
quality.

Proposition 9. Under strong taste projection, the following are true:

1. Any joint belief with πr(AB) = πl(AB) = 1 or πr(BA) = πl(BA) = 1 is unstable.
Hence, agents never agree on the location state in the long run.

50For continuity with previous sections, I use the superscript l to denote perceptions held by θ = −1 and
r for those of θ = 1.
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2. Suppose the number of players per period is arbitrarily large, N → ∞, and agents
observe only those in the previous period. If in truth ω ∈ ΩBA ∪ ΩAA, then for each θ,
πθt (AA)→ 1. Otherwise, πθt (BB)→ 1 for each θ. Agents necessarily conclude that the
quality difference is large enough so that all players prefer the same action.

Part 1 of Proposition 9 follows from the stability criteria established in Proposition 4.
The logic is identical to learning under strong taste projection absent quality differences
(Section 4.3). That is, agents never agree on the location state, and instead form fully-
polarized beliefs over ζ. Whenever the majority chooses A, left types come to believe ζ = L,
while right types conclude ζ = R. As usual, all agents believe A is optimal, and a uniform
herd on A results.

Part 2 of Proposition 9 is a consequence of how agents explain this uniform herd. Since
quality differences might be large, agents have a perfectly good explanation: if all choose A,
it must simply be that A has high quality, ∆q > ∆̂. The observation structure, where the
number of agents each period is infinite but players observe only the behavior of the previous
generation, implies that belief dynamics are deterministic, and is assumed merely to make
precise claims about limit beliefs.

Under strong projection, payoff differences along the quality dimension are always per-
ceived as greater than those along the idiosyncratic “horizontal” dimension. This misper-
ception has important consequences in markets for niche goods that are appealing only to a
minority of consumers. In such cases, low demand over attributed to poor quality, rather than
limited appeal. Thus, even those who would enjoy the good assume it’s not worthwhile.51

Further, this is independent of priors: even if a universal state is very unlikely, people still
conclude one option has such a large quality advantage that all should choose it irrespective
of taste.

This result adds a new perspective to puzzles surrounding the slow adoption of useful
agricultural practices. Consider a setting where farmers learn whether to adopt a new strain
of hybrid rice (A) or use the status-quo crop (B). Hybrid rice grows well only in specific
types of soil; for instance, some strains require either high or low salinity (Munshi, 2003).
Suppose in truth this seed is only worthwhile for low-salinty farms, which comprise 40% of
the region. But farmers don’t know this: they learn about the optimal soil by observing
how many others have adopted. Nor do they know the potential yield of the new seed. It’s
conceivable that even when sowed in suboptimal soil, the hybrid may trump the alternative.
Before investing in the new crop, farmers cultivate a small test plot—they have noisy signals
about the match between the seed and their farm. Initial adoption is based on this private

51An older literature in industrial organization attempts to explain how social learning may deteriorate
the market share of niche goods. See McFadden and Train (1996).
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information. In t = 2, additionally use the fraction of neighbors that previously adopted, say
roughly 40%. If both low- and high-salinity farms perceive themselves as the majority, then
both types find the initial demand too weak to adopt. The next period, new farmers learn
that none of those from the previous generation adopted the new seed. The only reasonable
conclusion is that the yield is inferior to the status quo, irrespective of variation across farms.
They’ve concluded that the new technology is globally, rather than selectively, ineffective.

5.3 Quality Distortions with Many Types

With many types, there may exist long-run stable equilibria in which those with different
tastes choose different options. In such cases, agents hold correct beliefs along the horizon-
tal dimension, but display an interesting form of mislearning along the quality dimension.
Instead of universally concluding one action has superior quality, perceptions of quality are
negatively correlated with tastes. Specifically, if people are confident that action A best suits
right-leaning tastes (ζ = R), then, relative to left types, right types conclude A has low
quality. Those with innate taste for an option develop a relatively pessimistic view of its
quality. This section, like those before, reiterates an implication of projection: people must
disagree on some dimension in order to explain observed behavior. If they agree on quality,
then they must disagree on location, and vice versa.

There is a simple logic for why projection induces negative correlation between quality
perception and taste. Suppose agents wish to learn the future health benefits of exercise.
People vary in how pleasurable—or painful—they find exercise, but each person knows their
own idiosyncratic taste. Upon observing how many others regularly attend the gym, exercise
fans—who overestimate the share with similar taste—find attendance lower than expected.
They attribute this in part to its health benefit, and conclude these benefits must be limited.
Those who find the gym particularly unpleasant draw precisely the opposite conclusion.
They see more than expected attending the gym—they think most find exercising a painful
endeavor—and thus infer that the health benefits must be high.

To show this result formally in the domain of choice-dependent projection with a contin-
uum of types, Θ = [θ, θ]. Suppose θ < 0 think θ ∼ Ĝl and θ > 0 think θ ∼ Ĝr; Ĝr dominates
Ĝl in the sense of FOSD. I also assume the number of players each period is large so that the
fraction choosing A each round, denoted αt = at/N , is a deterministic function of beliefs and
the state. While I assume just two distinct perceptions of G for simplicity, it will be clear
how the logic of the equilibria discussed here extends to the case where each type may hold
a distinct perception.

Suppose that in the long-run, a fraction α of players choose A. When agents face no
uncertainty over location—they know ζ = R—how does each type rationalize α? Given

37



their differing beliefs about how many have right-leaning tastes, different types must form
conflicting theories of ∆q. Denote by ∆l

q and ∆r
q the perceived quality differences of left and

right types, respectively. All players correctly understand that the marginal type—the type
indifferent between A and B—is θ̂ = −∆q/4k and that those who choose A have θ ≥ θ̂.
People simply use the wrong model when deciding how many players have taste θ > θ̂.
Letting θ̂l and θ̂r denote each type’s perception of θ̂, equilibrium requires α = 1− Ĝl(θ̂l) and
α = 1 − Ĝr(θ̂r). Thus left and right types respectively conclude ∆l

q = −4kĜ−1
l (1 − α) and

∆r
q = −4kĜ−1

r (1− α). Since Ĝr(x) ≤ Ĝl(x), it follows that ∆r
q ≤ ∆l

q.

Proposition 10. Suppose a continuum of types suffer choice-dependent projection. If agents
agree that A is optimal for right-leaning tastes (ζ = R), then right-leaning agents have a
lower perception of A’s quality than do left-leaning agents: ∆r

q ≤ ∆l
q.

In general, with perceptions that can vary for each θ, the equilibrium requirement is
α = 1 − Ĝ(θ̂(θ)|θ) for all θ, where Ĝ(·|θ) is a type θ’s perceived distribution and θ̂(θ) is
her perception of the marginal agent. This condition does not necessarily hold—existence
requires the speed at which Ĝ(·|θ) varies across θ to be small.52 However, in any such
equilibrium, it’s clear that the perceived quality advantage of A is decreasing in type. To see
this, let ∆q(θ) denote type θ’s perception of ∆q. α = 1− Ĝ(θ̂(θ)|θ) implies θ̂ = Ĝ−1(1−α|θ),
and using θ̂ = −∆q(θ)/4k yields

∆q(θ) = −4kĜ−1(1− α|θ). (13)

By first-order stochastic dominance (Assumption 1), Ĝ−1(1−α|θ) is increasing in θ, and thus
∆q(θ) is decreasing in θ.

6 Learning About Preferences

This section explores learning about horizontal differentiation, as in Sections 3 and 4, among
agents who revise their models of others’ preferences after observing actions. Until now, I
assumed agents have fixed perceptions: they believe the distribution of tastes (which they
mispredict) is perfectly known by all agents.53 This section considers a more realistic model
where all agents perceive some uncertainty over the distribution and learn about others’
tastes through their actions. If the true taste distribution lies in the support, will updating

52Specifically, a sufficient condition is that −Ĝ−1(1−α|θ) + θ is increasing, hence ∂
∂θ Ĝ

−1(1−α|θ) < 1, on
Θ.

53While this sounds dogmatic, this assumption forms the premise of many Bayesian games, including the
canonical model of Smith and Sørensen (2000).
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their models ameliorate agents’ mislearning of payoffs? If agents are naive—they neglect that
different types start at different priors—then the answer is no.

Specifically, I assume agents with different tastes rationally form divergent priors over
the distribution. But a naive agent errs by assuming all share her prior. She thus develops
incorrect beliefs about what other types infer. This demonstrates that it’s not heterogeneous
priors, per se, that lead agents astray, but rather their neglect of others’ discrepant beliefs.
I show that a particular class of priors can cause agents to become fully biased in their
perceptions of others tastes. That is, each wrongly concludes that all players share her
preference.

Subsection 6.1 extends the model and defines taste projection in a setting with uncertainty.
For the sake of demonstrating how naivete can generate incorrect learning even when agents
put positive weight on the true environment, I consider the most simple variant of the model.
Within this setting, Subsection 6.2 explores properties of biased long-run learning.

6.1 Uncertainty Over the Taste Distribution

Consider the model of Section 3 and 4 with no uncertainty over quality. Suppose there are
two types—a left type (θ = −1) and a right type (θ = 1).54 λ := Pr(θnt = 1) denotes the
fraction of players with right-leaning tastes. Learning the taste distribution entails estimating
then single parameter, λ.

Public and Private Beliefs. Suppose that λ is a random draw from distribution µ0 on
Λ = {λ1, λ2, ..., λK} with λ = min Λ and λ = max Λ. The state space is {L,R}×Λ, consisting
of payoff states, ω ∈ {L,R}, and distribution states, λk. Denote by πθt (ω, λk) a θ type’s public
belief that the state is (ω, λk) upon observing ht. Without loss of generality, suppose the
state is (R, λ∗) for some λ∗ ∈ Λ. Finally, let the conditional distributions of private beliefs
Fω meet Assumptions 3 and 4 from Section 3.

Priors. Assume Pr(ω = R) = 1/2, and let µ0 ∈ ∆(Λ) denote the prior over λ. Since
one’s taste is information about λ, each type updates µ0 using θ according to Bayes’ rule.
Let µθ denote each types’ revised “type-dependent” prior.55 I model taste projection as a
biased perception of revised priors over λ. As before, I assume agents are naive in that they
neglect that players with differing taste have different priors. A θ type thinks all players
share her prior µθ regardless of their tastes.56 This is the only way in which a θ-type’s model

54For continuity with previous sections, I use the superscript l for θ = −1 and r for θ = 1.
55Specifically, for θ and λk, µθ(λk) = Pr(λk | θ). So, µr(λk) = λkµ0(λk)/

∑
i λiµ0(λi) = λkµ0(λk)/E[λ]

and µl(λk) = (1− λk)µ0(λk)/
∑
i(1− λi)µ0(λi) = (1− λk)µ0(λk)/(1− E[λ]).

56This assumption is similar to Madarasz’s (2012) model of “information projection”. A θ type forms beliefs
as if her taste “signal” was publicly observed by all agents. But she also projects ignorance: she neglects that
other agents may receive contradictory information.
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is misspecified: she has a perfectly rational theory of how λ is distributed, but an incorrect
theory of what others think.

Assuming naivete—that each thinks others’ priors exactly match her own—is admittedly
strong.57 It is, however, stronger than necessary, and I assume this only because the error is
particularly simple. The results below essentially rely on players (unknowingly) inferring too
much, relative to a Bayesian, from their own tastes. Hence, they underappreciate the extent
to which priors differ across types. I examine the extreme case in which players think priors
don’t differ at all.

Decision Making and Updating. While beliefs about λ dictate the interpretation of actions,
an individual’s decision relies solely on her belief about ω.58 Denote this belief, the marginal
probability of ω = R, by πθt := ∑

k π
θ
t (R, λk). Since a naive agent thinks all share her prior,

she assumes all types share her public belief πθt (ω, λk) in each state, for all ht. The key
difference between rational and naive updating is that a rational player has correct second-
order beliefs. Hence, she knows that left and right types have different public beliefs.

6.2 Biased Long-Run Learning

This section shows that naivete—incorrect second-order beliefs about λ—can generate polar-
ized beliefs about ω and λ. For some priors, agents disagree on the interpretation of actions,
causing left types to grow confident that ω = L while right types grow certain that ω = R.
With polarized beliefs about payoffs, all players take the same action. In explaining this
herd, agents’ perceptions of others’ tastes also polarize: each thinks the herd indicates that
her taste is most common. I provide sufficient conditions on priors guaranteeing that such
outcomes occur with positive probability.

Before turning to formal results, I first provide some intuition. Uniform herding can
occur whenever a herd on an action, say A, is forever “polarizing” This means that left
and right types always (unknowingly) disagree on the interpretation of A no matter how
often it is played. Hence, the herd on A leads left and right types to believe ω = L and
ω = R, respectively. To check whether this is possible within a given environment, first
suppose people act in single file and let πθt (hAt ) be type θ’s belief that ω = R entering period
t following history hAt , where hAt is a history of length t− 1 consisting of all A’s. Then fully-
polarized beliefs may occur if for all t ∈ N, πrt+1(A, hAt ) > πrt (hAt ) and πlt+1(A, hAt ) < πlt(hAt ).
That is, each types’ beliefs are monotonic in hAt .

57This notion of naivete is consistent with the earlier definition (Assumption 2). A more general definition
of naivete that extends to settings with uncertainty is that all players think each agent shares her prior over
the taste distribution. Then Assumption 2 follows from this definition in settings with no uncertainty.

58Agents follow the same decision rule as in Section 3 (Lemma 1).
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Rational beliefs, of course, never satisfy this condition. However, they may be polarized by
finite sequences of A’s. To see this, consider an investment setting where the fraction of risk-
averse agents is λ ∈ Λ = {1

4 ,
3
4} with prior µ0(3/4) = 0.6. After using their own risk preference

as information, risk-averse and risk neutral agents respectively think µr(3/4) ≈ 0.82 and
µl(3/4) = 1/3. Hence, initially, each type rationally believes her taste is most common. If
the first investor chooses A, each agent reasons that the investor likely shared her taste. And
so a rational risk-neutral agent infers A is likely risky, whereas the risk-averse infer A is likely
safe. Action A temporarily polarizes beliefs.

But so long as agents are rational, A cannot forever polarize beliefs. Since agents have
correct second-order beliefs, they know exactly what people of opposite tastes infer actions.
A rational player cannot grow confident of some hypothesis while fully aware that another
rational agent is confident of an alternative hypothesis.59 In the example above, observing a
second A reveals little information—all know that each type likely chooses A irrespective of
their private signal. As such, after a long enough sequence of A’s, people eventually rely on
the original prior µ0 to draw conclusions instead of their taste dependent prior. All people
eventually agree that a long sequence of A’s is strong evidence for (R, 3/4).

Naive agents aren’t so clever. In the example above, naive players neglect that the first
A sends beliefs in opposite directions. Hence, upon observing a second A, observers fail to
limit their inference. Instead of understanding that each type is inclined to pick A in t = 2,
a naive risk-averse agent overestimates the likelihood that the second A results from a fellow
risk-averse agent with private information that A is safe. This over-inference from relatively
uninformative behavior sends naive beliefs of each types toward opposite extremes.

In general, if actions can have a lasting polarizing effect, then with positive probability
agents with different tastes converge to confident beliefs in opposite payoff states and a herd
results. This happens on sample paths that begin with a long sequence of A’s. From this
“initial condition” in which people unknowingly disagree on the state, most continue to choose
A—risk neutral grow confident A is risky and most are risk neutral all thew while the risk
averse are confident it’s safe and that they comprise the majority preference. I show that
these polar-opposite beliefs are stable: they lead all agents to play A with high probability,
which only strengthens players’ beliefs. Thus, so long as people can reach a neighborhood of
the polar-opposite beliefs, then they may forever remain at there.

59Although Acemoglu, Chernozhukov, and Yildiz (2007, 2009) show that rational agents may “agree to
disagree” on the interpretation of an infinite sequence of evidence, players in their model never fully disagree
on the state.
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6.2.1 Two-Point Taste Distributions

I first demonstrate mislearning in the simple case where, like the example above, λ takes
one of two values. Suppose Λ = {λ, λ} with λ < λ. The following lemma establishes what
a naive player comes to believe after observing an arbitrarily long herd on A as a function
of her prior. In this setting with |Λ| = 2, let µθ denote type θ’s perceived probability that
λ = λ.

Lemma 9. Suppose Λ = {λ, λ}. For any λ < 1
2 < λ, there exists a value µ̂(λ, λ) ∈ (0, 1) such

that µθ < µ̂(λ, λ) implies limt→∞ π
θ
t (hAt ) = 0 and µθ > µ̂(λ, λ) implies limt→∞ π

θ
t (hAt ) = 1.

Lemma 9 implies that if agents are initially sufficiently confident that λ = λ, then a herd
on A indicates (R, λ). But if µθ is low, the herd indicates (L, λ). Hence, whenever agents
have priors that fall on opposite sides of µ̂(λ, λ), the two types disagree on the interpretation
of an arbitrarily long herd. However, if λ > 1/2 or λ < 1/2, so that both λ and λ lie on the
same side of 1/2, then the two types always agree on the interpretation of a herd.

Proposition 11. Suppose λ < 1
2 < λ and µl < µ̂(λ, λ) < µr. With positive probability,

πrt (R, λ)→ 1 and πlt(L, λ)→ 1.

Agents grow fully polarized along both dimensions on which they learn: they disagree on the
payoff state, and each type of agent thinks most share her taste. In the next subsection, I
explain how this logic extends to more general distributions of λ, and discuss the intuition
and significance of these results.

6.2.2 General Taste Distributions

I now discuss informally how this logic should extend to settings with Λ = [0, 1]. Suppose
type-dependent priors µl and µr are respectively strictly decreasing and increasing on Λ.60

If the number of players each round is arbitrarily large, N → ∞, then πrt (R, λ) → 1 and
πlt(L, λ)→ 1. Actions converge on option A.

To provide intuition, suppose the truth is (R, λ∗) with λ∗ > 1
2 . First period actions a1

collapse beliefs onto the truth and (L, λ′) for some λ′ < 1
2 . Type-r believes (R, λ∗) is most

likely, and type-l believes (L, λ′) is most likely. In period 2, net of private information, each
type believes A is optimal. And, since agents thinks their beliefs are commonly shared, each
expects a player with taste different than her own to choose B. Agents neglect the fact
that all have incentive to choose A. Thus, a2 exceeds what any player expects to see in
either state. Given monotonic priors, the most likely explanation for this unexpectedly-high

60This is true, for instance, when λ is drawn from a uniform prior on [0, 1].
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outcome within a right-type’s model is that λ > λ∗. Within a left-type’s model, the most
likely explanation is λ < λ′. That is, a2 polarizes the agent’s beliefs about λ: a right type’s
estimate moves toward 1, while a left-type’s estimate moves toward 0. Increased polarization
implies still more choose A in round 3—a3 > a2, and polarization increases further. In
general, at+1 > at for all t, and at/N → 1. In the long-run, all choose A. Type-r thinks
(ω, λ) = (R, 1) and type-l believes in (ω, λ) = (L, 0).

With uncertainty over tastes, players explain a herd by assuming common preferences.
We saw a similar logic in Section 5, where players explained an otherwise anomalous herd by
inferring that one option had high relative quality. Essentially, people use alternative dimen-
sions of uncertainty to explain the seemingly unusual behavior that results from projection.
So long as players’ models are able to explain herds—whether it’s a theory of common tastes
or large quality differences—their erroneous beliefs are essentially self confirming: agent’s
incorrect theories perpetuate the herd, and thus never generate evidence inconsistent with
their false beliefs.

It’s worth emphasizing that naive learning can exacerbate biased perceptions of others’
tastes. In both cases studied above, beliefs about the average taste grow polarized across
types. Agents move from a seemingly mild error—they assume others share their uncertain
beliefs about λ—to a growing confident that most share their taste. In this sense, naive
learning can generate a strong taste projection, where each type thinks their own preference
is most common. Even though agents in this model have precisely correct theories of the
world aside from mispredicting others’ priors, the fact that they ignore heterogeneity in beliefs
when learning can potentially lead them far from the truth.

7 Conclusion

7.1 Relation to Existing Models

This paper contributes to a growing literature incorporating informational biases into eco-
nomics, and specifically social learning, to explain how false or divergent beliefs may persist.61

Ellison and Fudenberg (1993), who were among the first to study biased social learning among
agents with heterogeneous tastes, explore the efficiency of “rule-of-thumb” learning in a set-

61One strand of this literature studies the consequences of probabilistic errors—like over-inferring from
small samples (Rabin, 2002; Rabin and Vayanos 2010) or under-appreciating properties of statistical pro-
cesses, like mean reversion (Barberis, Shleifer, and Vishny, 1998). A distinct strand studies agents that
neglect the information content of others’ behavior, providing explanations for the winner’s curse and exces-
sive trading in asset markets (Eyster and Rabin, 2005; Eyster, Rabin and Vayanos, 2013). In this paper,
agents have incorrect beliefs about the distribution of tastes—at the root, a probabilistic error. But since this
leads to inaccurate perceptions of others’ information, agents additionally misinfer from others’ behavior.
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ting with observable payoffs, where agents with heterogeneous tastes simply choose whichever
action performed best of those observed. While I assume fully-Bayesian learning within a
misspecified model, their naive learning rule is akin to projection where each player thinks all
share her taste. Similarly, they show that their rule never leads to exact long-run efficiency,
but efficiency improves as tastes become less heterogeneous.

Bohren (2014) studies a variant of the canonical Bikhchandani et al. (1992) where only a
fraction of players observe the history, and players mispredict this fraction. As here, various
degrees of misprediction can lead to both stable incorrect herds and persistent fluctuations
in beliefs. The focus, however, is on a commonly-held misprediction, where I emphasize
the interaction of misperceptions that differ across types of agents. Further, the inferential
error studied by Bohren (2014) has a much different motivation, as it captures players’
ignorance of the redundancy in social behavior. This form of redundancy neglect has been
studied elsewhere in the literature, namely by DeMarzo, Vayanos and Zwiebel (2003), Eyster
and Rabin (2010, 2013) and Gagnon-Bartsch and Rabin (2014), who also show how biased
observational learning generates confident, yet false, beliefs.

Finally, the basic error I analyze is closely related to information projection, explored in
Madarasz (2012). He assumes agents overestimate the likelihood that people have the same
private information as themselves and draws out the implications of this error in a variety of
principal-agent problems.

From a broader perspective, this paper studies learning among agents with both non-
common priors and inconsistent beliefs about others’ priors. While a large literature studies
the implications of non-common priors, most notably as explanations for speculative trade
(e.g., Harrison and Kreps, 1978; and Morris, 1996), warranted caution on modeling non-
common priors has been advised. As subjective heterogeneous priors can justify any out-
come ex post, Morris (1995) argues that we should allow non-common priors only when we
can identify a source for the disagreement and precisely model these differences. This pa-
per proposes a disciplined way of incorporating non-common priors: an agent’s own taste
systematically dictates her beliefs about others’ tastes.62 Further, the literature on non-
common priors typically assumes people have correct beliefs about the distribution of these
priors—people simply “agree to disagree.” My key departure from this literature is that I
instead characterize learning among people who neglect disagreement, and wrongly believe
in a commonly-shared interpretation of public information.

62Models of overconfidence (e.g., Scheinkman and Xiong, 2003), where individuals disagree on the infor-
mation content of particular signals, are similar attempts to incorporate non-common priors in a structured
fashion.
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7.2 Discussion

This paper demonstrates how taste projection can influence social learning. I demonstrate
throughout how one’s interpretation of others’ behavior depends on the lens through which
it is observed—those with differing perceptions of tastes develop inconsistent beliefs about
the state of the world. And in many cases, this discrepancy in beliefs can lead behavior
far from the optimum. The results of this paper help explain three important phenomenon
inconsistent with rational learning models. First, taste projection offers an explanation for
why uniform behavior may arise despite diverse preferences. Second, it shows how society
can develop and maintain confident but false beliefs even when observing an arbitrarily large
sample of privately-informed behavior. Third, false-consensus errors can arise from naive
learning: when people ignore differences in prior beliefs, otherwise rational learning leads
agents to think their own taste is most common.

While the formal model focuses exclusively on observational learning, I conjecture that
taste projection has important consequences in other natural social-learning environments.
For instance, consider agents who directly share their experiences. In word-of-mouth learning
(e.g., Banerjee and Fudenberg, 2004) or learning from online reviews, where players observe
the actions and payoffs of predecessors, projection still leads learning astray. To see this,
suppose restaurant Y generates stochastic outcomes y, which provide type θ with utility
u(y, θ), and an observer sees a large collection of payoffs from a random sample of the
population. With correct knowledge of the distribution of θ, a rational observer infers the
distribution of Y from the sample of payoffs. But a taste projector, who has wrong beliefs
about the distribution of θ, develops a distorted perception of the underlying distribution of
outcomes, Y . For instance, if some unsophisticated diners earn high payoffs from average-
quality meals, “foodies” who think high payoffs come only from exceptional meals will be
mislead by the shining reviews of those with limited taste, and vice versa.

More broadly, a novel feature of this paper is the assumption that agents within non-
common-prior environments neglect heterogeneity in beliefs. Of course, this paper focuses on
the very specific case of social learning, but it naturally provokes curiosity about how similar
forms of naivete alter the results of well-known non-common-prior models like Harrison and
Kreps (1978), Morris (1996), and Scheinkman and Xiong (2003). What do speculative traders
come to believe about returns when they neglect disagreement? Beyond taste projection,
there are other reasons to expect disagreement neglect. For example, Malmendier and Nagel
(2011) find that market conditions experienced early in life shape investors expectations about
stock-market returns. It seems natural that an investor may under-appreciate the influence
of experience on perceptions, whereby concluding that investors from different generations
share her perceptions. How do conflicting expectations interact in the market and shape the
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perceptions of the current young generation? How will this naive learning process play out
in the long run? These questions are left open for future research.

A Smith and Sørensen’s Confounded Learning

Consider the model of Sections 3 and 4 where ∆q is known. This section demonstrates
that confounding beliefs only exist when |∆q| is sufficiently large, and show how their exis-
tence changes the basic results derived in above. Smith and Sørensen (2000) show that in
this setting, observational learning with heterogeneous preferences may lead to “confounded
learning”. With rational agents, there may exist an interior steady-state belief, π̂, such that
if public beliefs reach this value, then learning stops. Beliefs remain at π̂. The steady state
is such that the probability of any observation a is equal in both states R and L. Ob-
serving a when public beliefs are at the steady state reveals no new information. In terms
of updating process defined above, π̂ is the value that satisfies ψ(a | ˆ̀, R) = ψ(a | ˆ̀, L)
where ˆ̀ = (1 − π̂)/π̂. Smith and Sørensen (2000) show that under rational play, if such a
confounding belief exists, long-run beliefs converge to this value with positive probability.

Lemma A.1. Let θ̄l = maxθ Θl. Then no confounding beliefs exist if

∆q < k∆d(θ
l)(1− ξθ)/(1 + ξθ),

where

ξθ := min


√√√√∑

θ′∈Θl ĝ(θ′|θ)∑
θ′∈Θr ĝ(θ′|θ) ,

√√√√∑θ′∈Θr ĝ(θ′|θ)∑
θ′∈Θl ĝ(θ′|θ)

 < 1.

B Rational Learning with Preference Uncertainty

This section characterizes long-run learning among rational agents with taste-dependent dis-
tributional beliefs, which arise from uncertainty over the taste distribution (as in Section 6).
For instance, investors are uncertain if others are primarily risk averse or risk neutral, so an
agent’s own preference is information.

Rational learning contrasts sharply with learning under naive projection. Namely, rational
beliefs always converge, and people with different tastes never reach fully-polarized beliefs—
they never grow confident in different states. The various failures in learning that arise
with naive projection—incorrect learning, fully-polarized beliefs, and perpetually fluctuating
beliefs—are thus not a sole consequence of taste-dependent distributional beliefs. Rather,
they result from ignorance regarding others’ taste-dependent beliefs—from thinking others’
think like oneself.
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However, rational learning in this setting is not complete. Depending on the sample path,
rational agents either fully learn or converge to an interior fixed point. Disagreement may
exist in a long-run equilibrium, but in such cases, society remains uncertain: two agents with
different tastes never grow confident in two distinct hypotheses. Interestingly, when there
is uncertainty over the type distribution, confounded learning always arises with positive
probability. This contrasts the standard Smith and Sørensen (2000) model, where it arises
only if quality differences, |∆q|, are sufficiently large.

I consider a model identical to that in Section 6, but with the following exception: agents
are fully-rational, so second-order beliefs are correct. Essentially, each player knows precisely
the priors of all others. Despite this, rational learning may still fail in an important way.
In particular, confounding beliefs exist for any quality difference ∆q. Let πθt = ∑

k π
t
n(R, λk)

denote marginal probability of preference state ω = R. I now define “confounding beliefs”.

Definition A.1. Let the pair π̂l and π̂r be public beliefs held by types l and r, respectively.
The pair (π̂l,π̂r) are confounding beliefs if for all ζ, ζ ′ ∈ {L,R} and λk, λj ∈ Λ such that
π̂θ(ζ, λk), πθ(ζ ′, λj) > 0, Pr(a | π̂l, π̂r, ζ, λk) = Pr(a | π̂l, π̂r, ζ ′, λj) for any a ∈ {0, 1, ..., N}.

The next proposition shows that such belief profiles generically exist when there is un-
certainty about λ.

Proposition A.1. For any Λ with |Λ| ≥ 2 and any non-degenerate prior µ0 ∈ ∆(Λ), there
exists at least one pair of confounding beliefs (π̂l,π̂r) satisfying Definition A.1.

To show learning is incomplete, it must be the case that beliefs converge with positive prob-
ability to such a profile. The next proposition establishes this.

Proposition A.2. At least one pair of confounding beliefs is locally stochastically stable:
a confounding outcome occurs with positive probability. However, the probability of correct
learning goes to 1 as π1 → 1; for each θ, Pr(πθt (R, λ∗)→ 1) = 1 as π1 → 1.

This result is similar to that of Jackson and Kalai (1997). In a model of “recurring
games” with both type uncertainty and payoff uncertainty, behavior doesn’t converge to
Bayesian Nash equilibrium of the stage game with known type distributions whenever payoffs
depend on type. Here we see such non-convergence. However, players still learn with positive
probability. Uncertainty doesn’t imply society necessarily fails to learn.

Rational learning with uncertainty about tastes provides a simple and natural explanation
for persistent disagreement. At a confounding belief, people with different tastes disagree
on payoffs: relative to a risk-seeking agent, a risk-averse agent thinks it’s more likely that
most are risk averse and that A is safe. Despite continually observing behavior, players
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persistently disagree. This is because at a confounding belief, new observations reveal no
new information. As such, long-run beliefs across types are interior and thus depend on
priors, which are necessarily taste specific.

There are alternative explanations for how individuals who observe the same evidence
disagree in the long run. Such models include uncertainty over the distribution of private
information, as explored in Acemoglu, Chernozhukov, and Yildiz (2007 and 2009), or public
signals about a single dimension of uncertainty despite an environment with many dimensions
of uncertainty (Andreoni and Mylovanov, 2012). In all cases, so long as players are rational,
disagreement is never “fully” polarized. As I’ve argued, full polarization—where agents grow
confident in alternative hypotheses—does occur under taste projection.

C Alternative Forms of Misprediction

This section considers alternative distributional errors distinct from projection. For instance,
people might perceive a false sense of uniqueness. The analysis of limit beliefs in Sections 4.1
and 4.2 was independent of assumptions placed on λ̂. Hence, we can directly apply those
results to λ̂ exhibiting any particular pattern of error.

Proposition 4, which tells us when a confident equilibrium belief is stable, yields the
following general result for any form of misprediction of type proportion λ:

Proposition A.3. As N → ∞, universal learning is complete if and only if for all θ ∈ Θ,
λ̂(θ) ∈ (1/2, λ].

When all individuals mutually underestimate the share of people with the majority pref-
erence, then the truth is asymptotically stable. Near an equilibrium, people observe more
people taking the majority action than they anticipated, which only strengthens their beliefs.
However, this logic implies learning may backfire in settings with small N : people may grow
confident in a false state of the world. As N grows large, however, the probability of incorrect
learning goes to 0.

In all other scenarios not discussed in this paper, some—and possibly all—types hold non-
convergent beliefs. A particular example of interest is when people suffer a “false-uniqueness”
bias: each type thinks her type is least common.63 In such a case, it’s intuitive that action
frequencies evolve in a cyclical fashion. As some option gains popularity, say A, an individual
of either type believes B best suits her tastes. Her reasoning is that she has the minority
preference, thus the less popular option is most likely optimal. But since all people follow this

63Wallace (1996) puts it well: “everybody is identical in their unspoken belief that way deep down they
are different from everyone else.”
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reasoning, B will eventually become the majority choice. At this point, individuals will admit
they must have been wrong, once again believing A must be optimal for their preference.
Under the false-uniqueness bias, followers avoid the majority action, causing society’s most
prevalent choice to oscillate over time. This contrasts sharply with the intuition of the strong
false-consensus bias: there, followers flock to the majority action, increasing the frequency
at which it is chosen over time.

D Proofs
Proof of Lemma 1.

Proof. This follows immediately by rewriting the posterior r(p, π) as r = p/(p+(1−p)`) and solving
the decision rule in the text for a threshold on p.

Proof of Lemma 2.

Proof. See Lemma A.1.

Proof of Lemma 3.

Proof. Fix θ ∈ Θ and `θt ∈ R+. Suppose at/N > λ̂(θ). From Equation 3, `θt+1 < `θt ⇔ ψ(at |
`θt , L) < ψ(at | `θt , R)⇔ αθ(`θt , ω)a

[
1− αθ(`θt , L)

]N−a
< αθ(`θt , R)a

[
1− αθ(`θt , R)

]N−a
,

⇔ a log
(
αθ(`θt , L)

[
1− αθ(`θt , R)

][
1− αθ(`θt , L)

]
αθ(`θt , R)

)
+N log

(
1− αθ(`θt , R)
1− αθ(`θt , L)

)
< 0. (A.1)

If
(
αθ(`θt ,L)

[
1−αθ(`θt ,R)

][
1−αθ(`θt ,L)

]
αθ(`θt ,R)

)
> 1, then inequality A.1 holds iff

a/N <

(
1 + log

(
αθ(`θt ,L)
αθ(`θt ,R)

)/
log

(
1−αθ(`θt ,R)
1−αθ(`θt ,L)

))−1
=: κ(`θt , θ). Otherwise, A.1 holds iff a/N >

κ(`θt , θ). Finally, note that
(
αθ(`θt ,L)

[
1−αθ(`θt ,R)

][
1−αθ(`θt ,L)

]
αθ(`θt ,R)

)
> 1 ⇔ αθ(`θt , L) > αθ(`θt , R) ⇔ λ̂(θ) + [1 −

2λ̂(θ)]FL(p(`θt )) > λ̂(θ) + [1 − 2λ̂(θ)]FR(p(`θt )) ⇔ λ̂(θ) < 1/2, since FR(p(`θt )) < FL(p(`θt )) by
Assumption 3, since MLRP implies first-order stochastic dominance.

Proof of Proposition 1.

Proof. Fix θ ∈ Θ `θt ∈ R+. Let m = min{1− λ̂(θ), λ̂(θ)} and m = max{1− λ̂(θ), λ̂(θ)}. To proceed,
I show that for all `θt ∈ R+, κ(`θt , θ) ∈ [m,m]. Since κ(`θt , θ) is monotonic in `θt , we must consider
lim`→0 κ(`, θ) and lim`→∞ κ(`, θ). First, note that lim`→0 αθ(`, ω) = λ̂(θ) and lim`→∞ αθ(`, ω) =
1− λ̂(θ). Thus, we must use L’Hoptial’s rule to evaluate the limits:

∂

∂`
log

(
αθ(`, L)
αθ(`, R)

)
=
(
αθ(`, L)
αθ(`, R)

)−1 αθ(`, R) ∂∂`αθ(`, L)− αθ(`, L) ∂∂`αθ(`, R)
αθ(`, R)2 ,

49



∂

∂`
log

(1− αθ(`, R)
1− αθ(`, L)

)
=
(1− αθ(`, R)

1− αθ(`, L)

)−1 (1− αθ(`, R)) ∂∂`αθ(`, L)− (1− αθ(`, L)) ∂∂`αθ(`, R)
[1− αθ(`, R)]2 ,

and, since Equation 5 implies ∂
∂`αθ(`, ω) =

[
1− 2λ̂(θ)

]
fω
(
p(`)

)
∂
∂`p(`),

it follows that

lim
`→0

∂
∂` log

(
αθ(`,L)
αθ(`,R)

)
∂
∂` log

(
1−αθ(`,R)
1−αθ(`,L)

) = 1− λ̂(θ)
λ̂(θ)

, and lim
`→∞

∂
∂` log

(
αθ(`,L)
αθ(`,R)

)
∂
∂` log

(
1−αθ(`,R)
1−αθ(`,L)

) = λ̂(θ)
1− λ̂(θ)

.

Thus, lim`→0 κ(`, θ) = λ̂(θ) and lim`→∞ κ(`, θ) = 1 − λ̂(θ), and κ(`, θ) ∈ [m,m] for all ` ∈ R+.
Suppose at/N > λ̂(θ). If λ̂(θ) > 1/2, then at/N > m > κ(`θt , θ) and Lemma 3 implies `θt+1 < `θt .
Otherwise, Lemma 5 implies `θt+1 > `θt . Now suppose at/N < 1 − λ̂(θ). Similarly, if λ̂(θ) > 1/2,
then at/N < m < κ(`θt , θ) and Lemma 3 implies `θt+1 > `θt . Otherwise, if λ̂(θ) < 1/2, Lemma 5
implies `θt+1 < `θt .

Proof of Corollary 1.

Proof. Fix an arbitrary θ ∈ Θ and suppose she has likelihood ratio `θt ∈ R+. Given observation at
at public belief `θt , Equation 3 implies `θt+1 > `θt ⇔ Ψθ(at, `θt ) > 1 ⇔ ψ(at | `θt , L) > ψ(at | `θt , R).
Suppose N = 1 and at = 1 and let p̄ := p(`θt ) denote type θ’s private-belief threshold in t. Then
Equation 5 implies ψ(at | `θt , L) > ψ(at | `θt , R) if and only if

[
1 − λ̂(θ)

]
FL(p̄) + λ̂(θ)

[
1 − FL(p̄)

]
>
[
1− λ̂(θ)

]
FR(p̄)+ λ̂(θ)

[
1−FR(p̄)

]
, which holds if and only if

[
1−2λ̂(θ)

]
FL(p̄) >

[
1−2λ̂(θ)

]
FR(p̄).

By Assumption 3, FL(p̄) > FR(p̄) for all `θt ∈ R+, this inequality holds if and only if λ̂(θ) < 1
2 .

Proof of Proposition 2.

Proof. Fix an arbitrary θ ∈ Θ and suppose she has likelihood ratio `θt ∈ R+. Assuming N = 1
and at = 1, Proposition 1 Ψθ(at = 1, `θt ) > 1 ⇔ λ̂(θ) < 1

2 . First consider λ̂(θ) ∈ (1
2 , 1) so

Ψθ(at = 1, `θt ) < 1. We want to show |`θt+1 − `θt | is increasing in λ̂(θ) on this domain. Note that
|`θt+1 − `θt | = `θt |Ψθ(A, `θt ) − 1|, which is increasing in λ̂(θ) ⇔ Ψθ(A, `θt ) is decreasing in λ̂(θ). Let
p̄ := p(`θt ) denote θ’s private-belief threshold in t. Note

Ψθ(A, `θt ) =
[
1− λ̂(θ)

]
FL(p̄) + λ̂(θ)

[
1− FL(p̄)

][
1− λ̂(θ)

]
FR(p̄) + λ̂(θ)

[
1− FR(p̄)

] =
λ̂(θ)

[
1− 2FR(p̄)

]
+ FR(p̄)

λ̂(θ)
[
1− 2FL(p̄)

]
+ FR(p̄)

so ∂
∂λ̂(θ)Ψθ(A, `θt ) < 0 if and only if λ̂(θ)

[
1− 2FR(p̄)

][
1− 2FL(p̄)

]
+ FR(p̄)

[
1− 2FL(p̄)

]
>

λ̂(θ)
[
1− 2FL(p̄)

][
1− 2FR(p̄)

]
+FL(p̄)

[
1− 2FR(p̄)

]
, which holds if and only if FL(p̄) > FR(p̄), which

is true for all `θt ∈ R+. Next, suppose that λ̂(θ) ∈ (0 < 1
2) so Ψθ(at = 1, `θt ) > 1. We want to show

that |`θt+1 − `θt | = `θt |Ψθ(A, `θt )− 1| is decreasing in λ̂(θ) on this domain. This is true iff Ψθ(A, `θt ) is
decreasing in λ̂(θ), which was shown in the case above. The logic is identical for at = 1, but uses
the fact that Ψθ(at, `θt ) > 1⇔ λ̂(θ) > 1

2 .

Proof of Proposition 3.
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Proof. If λ̂l = λ̂r, then play and beliefs correspond to the true Bayesian equilibrium and for all
t ∈ N, πθt = πθ

′
t for all θ, θ′ ∈ Θ. This equilibrium is studied in Smith and Sørensen (2000) and

this result follows directly from their Theorem 5. Intuition is as follows: By Lemma 4, 〈`θt 〉 forms
a conditional martingale on ω = R. By the Martingale Convergence Theorem, it must converge
almost surely to some stationary limit. By Lemma 5, the only stationary limit points are ` ∈ {0,∞}.
But rational beliefs never converge to fully-incorrect beliefs, so it must be that `θt → 0 a.s.

Proof of Lemma 4.

Proof. Fix an arbitrary θ ∈ Θ and suppose ω = R. Note that

E[`θt+1 | `t] =
N∑

at=0
ψ(at | `t, R)Ψθ

(
at, `

θ
t

)
`θt (A.2)

Thus in order for 〈`θt 〉 to form a Martingale conditional on R, we would need∑N
at=0 ψ(at | `t, R)Ψθ

(
at, `

θ
t

)
= 1 for all `θt ∈ R+. But note

N∑
at=0

ψ(at | `t, R)Ψθ(at, `θt ) =
N∑

at=0
ψ(at | `t, R)

ψθ
(
at | `θt , L

)
ψθ
(
at | `θt , L

) =
N∑

at=0

ψ(at | `t, R)
ψθ
(
at | `θt , R

)ψθ(at | `θt , L).
Trivially, by the Law of Total Probability,

∑N
at=0 ψθ(at | `θt , L) = 1. Hence, in order for the

Martingale condition above to hold generically, we require ψ(at | `t, R) = ψθ(at | `θt , R) for all
at ∈ {0, 1, ..., N} in each t ∈ N, which is only true if λ̂(θ) = λ and for each θ, θ′ ∈ Θ, `θt = `θ

′
t in

each t ∈ N. But `θt = `θ
′
t in each t ∈ N ⇔ λ̂(θ) = λ̂(θ′). Hence, the martingale condition holds if

and only if λ̂(θ) = λ for all θ ∈ Θ.

Proof of Lemma 5.

Proof. This is a direct application of Theorem B.1 and B.2 of S&S. They show that any limit point
must be a steady-state of the process. That is, if `θ ∈ supp

(
`θ∞
)
, then it must be that ϕ(X, `θ) = `θ.

For all θ ∈ Θ, the only beliefs that satisfy this condition are πθ ∈ {0, 1}.

Proof of Lemma 6.

Proof. Adapted from Theorem C.1 of Smith and Sørensen (2000).

Proof of Proposition 4.

Proof. Let ˆ̀ be a fixed point of the joint belief process 8. From Lemma 6, ˆ̀ is stable if χθ(ˆ̀) < 1
for all θ ∈ Θ, and unstable if χθ(ˆ̀) > 1 for some θ. I determine when this condition holds as
a function of λ̂, which dictates the action frequency each type expects at fixed point ˆ̀. At ˆ̀, a
θ-type believes all share confident belief ˆ̀θ, and thus expects A with frequency αθ

(ˆ̀θ, ω); the true
frequency is α(ˆ̀). To determine whether this unexpected frequency reinforces each θ’s beliefs, we
must calculate χθ(ˆ̀) =

∏N
a=0

(
∂
∂`ϕθ

(
a, ˆ̀θ))ψ(a,`)

for each θ.
Step 1: Calculate ∂

∂`ϕθ(a, `).
Recall ϕθ(a, `) = Ψθ(a, `)`, where Ψθ(a, `) = ψθ(a | `, L)/ψθ(a | `, R). From the definition of

ψθ(a | `, ω) in Equation 4, it follows that
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∂

∂`
ψθ(a | `, ω) =

(
N

a

)(
aαθ(`, ω)a−1[1− αθ(`, ω)

]N−a ∂
∂`
αθ(`, ω)

−(N − a)αθ(`, ω)a
[
1− αθ(`, ω)

]N−a−1 ∂

∂`
αθ(`, ω)

)
= ∂

∂`
αθ(`, ω)

(
a
ψθ(a | `, ω)
αθ(`, ω) − (N − a) ψθ(a | `, ω)

1− αθ(`, ω)

)
. (A.3)

From Equation 5 it follows that ∂
∂`αθ(`, ω) =

[
1 − 2λ̂(θ)

]
fω
(
p(`)

)
∂
∂`p(`). Plugging this into Equa-

tion A.3 and using the fact p(`) = `/(1 + `)⇒ ∂
∂`p(`) = 1/(1 + `)2 yields

∂

∂`
ψθ(a | `, ω) =

[
1− 2λ̂(θ)

]
(1 + `)2 ψθ(a | `, ω)fω

(
p(`)

)( a−Nαθ(`, ω)
αθ(`, ω)

[
1− αθ(`, ω)

]) . (A.4)

Using the definition of Ψθ(a, `) and Equation A.3,

∂

∂`
Ψθ(a, `) = Ψθ(a, `)

{[
1− 2λ̂(θ)

]
(1 + `)2

[
fL
(
p(`)

)( a−Nαθ(`, L)
αθ(`, L)

[
1− αθ(`, L)

])

− fR
(
p(`)

)( a−Nαθ(`, R)
αθ(`, R)

[
1− αθ(`, R)

]) ]}. (A.5)

Finally, ∂
∂`ϕθ(a, `) = Ψθ(a, `) + ` ∂∂`Ψθ(a, `), so Equation A.5 implies

∂

∂`
ϕθ(a, `) = Ψθ(a, `)

{
1 +

[
1− 2λ̂(θ)

]
`

(1 + `)2

[
fL
(
p(`)

)( a−Nαθ(`, L)
αθ(`, L)

[
1− αθ(`, L)

])

− fR
(
p(`)

)( a−Nαθ(`, R)
αθ(`, R)

[
1− αθ(`, R)

]) ]}. (A.6)

Step 2: Evaluation of χθ(ˆ̀).
While we want to assess whether χθ(ˆ̀) exceeds 1 at the candidate equilibrium belief, the fact

that fixed points are confident beliefs adds a complication to this approach. If each component of
ˆ̀ is 0 or ∞,then χθ(ˆ̀) = 1 for all θ ∈ Θ. I now show this.

It is clear from Equation A.6 that if ` ∈ {0,∞}, then ∂
∂`ϕθ(a, `) = Ψθ(a, `). Furthermore, it is

easy to show that Ψθ(a, 0) = Ψθ(a,∞) = 1: if θ is confident in ω, then her perceived probability
of outcome a is identical in each ω ∈ {L,R}, so ψθ(a | 0, L) = ψθ(a | 0, R) and ψθ(a | ∞, L) =
ψθ(a | ∞, R). Formally, consider ˆ̀θ = 0. The private belief threshold is p(ˆ̀θ) = 0, so the perceived
probability that a random player takes A in ω is αθ(0, ω) =

[
1−λ̂(θ)

]
Fω(0)+λ̂(θ)

[
1−Fω(0)

]
= λ̂(θ).

If instead ˆ̀θ =∞, then p
(ˆ̀θ) = 1 and αθ(∞, ω) = 1− λ̂(θ). In either case, αθ

(ˆ̀θ, ω) is independent
of ω, so it follows immediately from Equation 4 that ψθ

(
a | ˆ̀θ, ω

)
is also independent of ω. Hence

Ψθ

(
a, ˆ̀θ) = ψθ

(
a | ˆ̀θ, L

)
/ψθ

(
a | ˆ̀θ, R

)
= 1. So for any π̂ ∈ Π and corresponding likelihood ratios ˆ̀,

∂

∂`
ϕθ
(
a, ˆ̀θ)∣∣∣∣

`=ˆ̀
= 1. (A.7)
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It follows from Equation 11 that χθ(ˆ̀) = 1, which tells us nothing about the stability of the process
in the neighborhood of ˆ̀. To address this, note that χθ(·) is differentiable with respect to any
`θ in the neighborhood of any ˆ̀. So, stability is determined by whether lim`θ→ˆ̀θ χθ(`θ, `−θ) = 1
from below or above. If it’s from below, then χθ(`) < 1 at all points ` in the neighborhood of ˆ̀.
So any linear approximation of the system within this neighborhood converges toward the fixed
point, implying stability. But if χθ(`) approaches 1 from above, χθ(`) > 1 at all points ` in the
neighborhood of ˆ̀, implying the fixed point is not stable. Hence the sign of the derivative of χθ(`)
with respect to ˆ̀θ determines stability analogously to Lemma 6: ˆ̀ is stable if ∂

∂χθ(ˆ̀) < 0 for all
θ ∈ Θ, and unstable if ∂

∂`χθ(ˆ̀) > 0 for some θ ∈ Θ.
To proceed, I determine when ∂

∂χθ(ˆ̀) ≶ 0 for an arbitrary θ-type at each of the possible limit
points, ˆ̀θ = 0 and ˆ̀θ =∞, respectively.
Step 3: Stability of `θt near ˆ̀θ = 0.

Suppose π̂(θ) = 1⇒ ˆ̀θ = 0. Note that ∂
∂`θ
χθ(`) > 0⇔ ∂

∂`θ
logχθ(`) > 0. Notice

∂

∂`θ
logχθ(`)

∣∣∣∣
`=ˆ̀

=
N∑
a=0

ψ(a, ˆ̀)
(
∂

∂`
ϕθ(a, 0)

)−1( ∂2

∂`2
ϕθ
(
a, `θ

)∣∣∣∣
ˆ̀θ=0

)

+
N∑
a=0

(
∂

∂ ˆ̀θψ(a, `)
∣∣∣∣
`=ˆ̀

)
log

(
∂

∂`
ϕθ(a, 0)

)

=
N∑
a=0

ψ(a, ˆ̀)
(
∂2

∂`2
ϕθ
(
a, `θ

)∣∣∣∣
ˆ̀θ=0

)
(A.8)

where the final equality follows from ∂
∂`ϕθ(a, 0) = 1 (as shown above in Equation A.7). Since

∂2

∂`2ϕθ(a, `) = ∂2

∂`2 {Ψθ(a, `)`} = 2 ∂
∂`Ψθ(a, `) + ` ∂

2

∂`2 Ψθ(a, `), Equation A.8 reduces to

∂

∂`θ
logχθ(`)

∣∣∣∣
`=ˆ̀

=
N∑
a=0

2ψ(a, ˆ̀) ∂
∂`

Ψθ(a, 0) (A.9)

From Equation A.5 and using the fact that p(0) = 0⇒ αθ(0, ω) = λ̂(θ) and Ψθ(a, 0) = 1,

∂

∂`
Ψθ(a, 0) =

[
1− 2λ̂(θ)

][
fL(0)− fR(0)

] ( a−Nλ̂(θ)
λ̂(θ)

[
1− λ̂(θ)

]) , (A.10)

so Equation A.9 implies

∂

∂`θ
logχθ(`)

∣∣∣∣
`=ˆ̀

=
2
[
1− 2λ̂(θ)

][
fL(0)− fR(0)

]
λ̂(θ)

[
1− λ̂(θ)

] N∑
a=0

ψ(a, ˆ̀)
(
a−Nλ̂(θ)

)
=

2
[
1− 2λ̂(θ)

][
fL(0)− fR(0)

]
λ̂(θ)

[
1− λ̂(θ)

] (
Nα(ˆ̀)−Nλ̂(θ)

)
. (A.11)

where the second equality follows from the fact that
∑N
a=0 ψ(a, ˆ̀) = 1 and

∑N
a=0 aψ(a, ˆ̀) is simply

the expected value of a Binomial(N ,α(ˆ̀)) random variable, so
∑N
a=0 aψ(a, ˆ̀) = Nα(ˆ̀). Since

fL(0)− fH(0) > 0, Equation A.11 implies the following result:
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∂

∂`θ
χθ(`)

∣∣∣∣
`=ˆ̀

< 0⇔

 λ̂(θ) < α(ˆ̀) if λ̂(θ) > 1
2

λ̂(θ) > α(ˆ̀) if λ̂(θ) < 1
2 .

(A.12)

Step 4: Stability of `θt near ˆ̀θ =∞:
Recall that `θt is the likelihood ratio of state L relative to state R, hence `θt = ∞ indicates

confidence in state L. This is equivalent to the likelihood ratio of state R relative to state L—the
inverse of `θt—equal to 0. Denote the inverse likelihood ratio by r

θ
t := (`θt )−1. In order to follow the

logic of the case in Step 3, which determined stability of ˆ̀θ = 0, I assess the stability of ˆ̀θ =∞ by
determining the stability of the inverse likelihood ratio r at 0. The stability coefficient of interest
is now that of the inverse likelihood ratio:

χ̃θ(r̂) =
N∏
a=0

(
∂

∂r
ϕ̃θ
(
a, r̂θ

))ψ̃(a,r)
(A.13)

where ϕ̃θ(a, r) is the transition equation for the process 〈rθt 〉: ϕ̃θ(a, r) = Ψ̃θ(a, r)r with Ψ̃θ(a, r) =
ψ̃θ(a | r, R)/ψ̃θ(a | r, L). ψ̃θ(a | r, ω) is the direct analog of ψθ(a | `, ω): it is the probability of
observing a at belief r in state ω according to type-θ’s theory of tastes.

As above, χ̃θ(r̂) = 1 if r̂θ = 0, so we must calculate the derivative or χ̃θ(r̂) with respect to r
θ

and evaluate the sign at 0. As above, the fixed point is stable the sign is negative, and unstable
when positive. Identical calculations to those in Step 3 yield

∂

∂rθ
log χ̃θ(r)

∣∣∣∣
r=r̂

=
N∑
a=0

2ψ̃(a, r̂) ∂
∂r

Ψ̃θ

(
a, r
)∣∣∣∣

r=r̂

. (A.14)

Note that

∂

∂r
Ψ̃θ(a, r) = Ψ̃(a, r)

{[
1− 2λ̂(θ)

]
(1 + r)2

[
fL
(
p(r)

)( a−Nαθ(r, L)
αθ(r, L)

[
1− αθ(r, L)

])

fR
(
p(r)

)( a−Nαθ(r, R)
αθ(r, R)

[
1− αθ(r, R)

]) ]}. (A.15)

At r = 0, p(r) = 1 and αθ(r, ω) = 1− λ̂(θ), so when r̂
θ = 0,

∂

∂rθ
Ψ̃θ

(
a, rθ

)∣∣∣∣
r=r̂

=
[
1− 2λ̂(θ)

][
fL(1)− fR(1)

] (a−N(1− λ̂(θ)
)

λ̂(θ)
[
1− λ̂(θ)

] ) . (A.16)

Plugging into Equation A.14,

∂

∂rθ
log χ̃θ(r)

∣∣∣∣
r=r̂

=
2
[
1− 2λ̂(θ)

][
fL(1)− fR(1)

]
λ̂(θ)

[
1− λ̂(θ)

] (
Nα(r̂)−N

(
1− λ̂(θ)

))
. (A.17)

Since fR(1) > fL(1), we have the following result:

∂

∂rθ
χ̃θ(r)

∣∣∣∣
r=r̂

< 0⇔
{

1− λ̂(θ) > α(r̂) if λ̂(θ) > 1
2

1− λ̂(θ) < α(r̂) if λ̂(θ) < 1
2

(A.18)

Step 5. Linking stability to expected action frequencies.
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Finally, I write the stability conditions derived in Steps 3 and 4—Results A.12 and A.18—in
terms of the expected and true action frequencies at ˆ̀. First, note that

F̂θ

(
Mθ(ˆ̀), ˆ̀) =

{
λ̂(θ) if λ̂(θ) > 1

2
1− λ̂(θ) if λ̂(θ) < 1

2 .
(A.19)

Second, note that by definition, α(ˆ̀) = F (A, ˆ̀) and 1− α(ˆ̀) = F (B, ˆ̀). Plugging these identities
into Results A.12 and A.18 respectively yield

∂

∂`θ
χθ(`)

∣∣∣∣
`=ˆ̀

< 0⇔
{

F̂θ

(
Mθ(0), 0

)
< α(ˆ̀) = F (A, ˆ̀) if λ̂(θ) > 1

2
F̂θ

(
Mθ(0), 0

)
< 1− α(ˆ̀) = F (B, ˆ̀) if λ̂(θ) < 1

2 ,
(A.20)

and

∂

∂rθ
χ̃θ(r)

∣∣∣∣
r=r̂

< 0⇔
{

F̂θ

(
Mθ(∞),∞

)
< 1− α(ˆ̀) = F (B, ˆ̀) if λ̂(θ) > 1

2
F̂θ

(
Mθ(∞),∞

)
< α(ˆ̀) = F (A, ˆ̀) if λ̂(θ) < 1

2 .
(A.21)

Finally, we can rewrite the F (X, ˆ̀) terms on the right-hand side of the expressions above in terms
of a θ-type’s expected majority action at ˆ̀. Note

Mθ(0) =
{
A if λ̂(θ) > 1

2
B if λ̂(θ) < 1

2 ,
and Mθ(∞) =

{
B if λ̂(θ) > 1

2
A if λ̂(θ) < 1

2 .
(A.22)

Appropriately incorporating these identities into A.23 and A.24 finally yields the following stability
conditions:

∂

∂`θ
χθ(`)

∣∣∣∣
`=ˆ̀

< 0⇔
{

F̂θ

(
Mθ(0), 0

)
< F

(
Mθ(0), ˆ̀) if λ̂(θ) > 1

2
F̂θ

(
Mθ(0), 0

)
< F (Mθ(0), ˆ̀) if λ̂(θ) < 1

2 ,
(A.23)

and

∂

∂rθ
χ̃θ(r)

∣∣∣∣
r=r̂

< 0⇔
{

F̂θ

(
Mθ(∞),∞

)
< F (Mθ(∞), ˆ̀) if λ̂(θ) > 1

2
F̂θ

(
Mθ(∞),∞

)
< F (Mθ(∞), ˆ̀) if λ̂(θ) < 1

2 .
(A.24)

Hence, in all cases—ˆ̀∈ {0,∞} and λ̂(θ) ≶ 1
2—that the stability condition holds for a θ type if and

only if F̂θ

(
M
(ˆ̀(θ)), ˆ̀(θ)

)
< F

(
M
(ˆ̀(θ)), ˆ̀), completing the proof.

Proof of Proposition 5.

Proof. Suppose ˆ̀∈ L is such that ˆ̀θ = 0 for all θ ∈ Θ. I show that this point belief is necessarily
unstable; the proof for the alternative case where ˆ̀θ =∞ for all θ ∈ Θ, which follows analogously,
is omitted.

Instability of asymptotic agreement is established along the lines of Proposition 4. However, to
demonstrate the robustness of this result, I extend the proof of Proportion 4 to allow for known
quality differences. Without loss of generality, assume ∆q ≥ 0. The logic is identical: ˆ̀ is unstable
if ∂

∂`θ
χθ(`)

∣∣
`=ˆ̀ > 0 for some θ ∈ Θ. The only aspect of that proof that we must change is the
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function αθ(`θ, ω) (now given by Equation ??). Since ∆q 6= 0, ∂
∂`p(0, θ) = 1/v(θ). Hence

∂

∂`
αθ(0, ω) = fω(0)

∑
θ̃∈Θl

ĝ(θ̃|θ)
v(θ̃)

−
∑
θ̃∈Θr

ĝ(θ̃|θ)
v(θ̃)

 . (A.25)

We can now rely on many of the derivations in Proposition 4. It follows that

∂

∂`θ
logχθ(`)

∣∣∣∣
`=ˆ̀

=
N∑
a=0

2ψ(a, ˆ̀) ∂
∂`

Ψθ(a, 0)

=
2
[
fL(0)− fR(0)

]
αθ(0, ω)

[
1− αθ(0, ω)

]
∑
θ̃∈Θl

ĝ(θ̃|θ)
v(θ̃)

−
∑
θ̃∈Θr

ĝ(θ̃|θ)
v(θ̃)

 N∑
a=0

ψ(a, ˆ̀)(a−Nαθ(0, ω)).(A.26)

The first equality follows from Equation A.9. To arrive at the second equality, first plug ∂
∂`αθ(0, ω)

from A.25 into the expression for ∂
∂`ψθ(a | `, ω) in Equation A.3, then plug the result into Equa-

tion ??, and evaluate the expression at `θ = 0. Given ∆q ≥ 0, all right and passive players take A
at ˆ̀, so αθ(0, L) = αθ(0, R) = 1−

∑
θ̃∈Θl ĝ(θ̃|θ)—θ’s perceived measure of all types other than active

left types. Since
∑N
a=0 ψ(a, ˆ̀)a = E[ã] assuming ã ∼ Binomial(N,α(ˆ̀)), and since fL(0) > fR(0), it

follows from Equation A.26 that ∂
∂`θ

logχθ(`)
∣∣
`=ˆ̀> 0 if and only if∑

θ̃∈Θl

ĝ(θ̃|θ)
v(θ̃)

−
∑
θ̃∈Θr

ĝ(θ̃|θ)
v(θ̃)

 [α(ˆ̀)− αθ(0, ω)
]
> 0. (A.27)

I now argue that, generically, Condition A.27 must hold for some θ ∈ Θ. First, for any θ ∈ Θr,
αθ(0, ω) > α(ˆ̀). If not, this implies that an active right type overestimates the share of active
left types, providing a contradiction. Similarly, for any θ ∈ Θl, αθ(0, ω) < α(ˆ̀). Next, define
V (θ) :=

∑
θ̃∈Θl

ĝ(θ̃|θ)
v(θ̃) −

∑
θ̃∈Θr

ĝ(θ̃|θ)
v(θ̃) . The only way for condition A.27 to fail at all θ is if V (θ) < 0

for all θ ∈ Θl, and V (θ) > 0 for all θ ∈ Θr. For a contradiction, suppose this is true. Recall
v(θ) = (4kθ + ∆q)/(4kθ − ∆q). From the definition of Θr in Lemma ??, 1/v(θ) is increasing on
Θr. Because Ĝ(θ̃|θ) first-order stochastically dominates Ĝ(θ̃|θ′) whenever θ > θ′,

∑
θ̃∈Θr

ĝ(θ̃|θ)
v(θ̃) is

increasing in θ. Hence, for large enough θ, V (θ) < 0. Similarly, for small enough θ, V (θ) > 0. Thus
Condition A.27 must fail for some θ, implying a vector of beliefs such that all agents agree on the
state is necessarily unstable.

Proof of Proposition 6.

Proof. (Sketch.) Proposition 4 determines Π∗. From Proposition 5, we know (0, 0) /∈ Π∗ and
(1, 1) /∈ Π∗. But π̂ = (0, 1) and π̂ = (1, 0) satisfy the stability requirement of Proposition 4: each
type observes more taking her anticipated majority action than expected. We need only show that
beliefs reach a neighborhood of these stable limit points. Suppose 〈`lt, `rt 〉 reaches the north-west
quadrant of belief space (see Figure 3), which we define by all points `t such that `rt > Ll(`lt) and
`lt < Lr(`rt ) (see footnote 48). Call this set LNW . Restricted to LNW , each 〈`lt〉 and 〈1/`rt 〉 are non-
negative supermartingales, and thus, by the Martingale Convergence Theorem, converge. Since 0
is a stable limit point of each of these processes, they either both converge to 0 (which occurs with
positive probability) or exit LNW in finite time. Similarly, consider the south-east quadrant defined
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by all points `t such that `rt < Ll(`lt) and `lt > Lr(`rt ). Call this space LSE . Restricted to LSE ,
each 〈`rt 〉 and 〈1/`lt〉 are non-negative supermartingales, and thus converge. Hence, if process 〈`lt, `rt 〉
enters LSE , it either converges to (∞, 0) (which occurs with positive probability) or exits. Further
more, since no stable limit points exist outside of LNW ∪ LSE , the process must enter LNW ∪ LSE
infinitely often. Thus, eventually, the process converges to one of the two stationary points.

Proof of Lemma 7.

Proof. Since E[`θt+1 | `t] =
∑N
at=0 ψ(at | `t, R)Ψθ

(
at, `

θ
t

)
`θt , E[`θt+1 | `t] > `θt ⇔ ξθ(`lt, `rt ) ≡∑N

at=0 ψ(at | `t, R)Ψθ

(
at, `

θ
t

)
> 1. We want to assess whether this holds for each θ in a neigh-

borhood of ` = 0 = (0, 0). Since 0 is a fixed point of the belief process for each θ, ξθ(0, 0) = 1.
Hence we consider the (first-order) Taylor-Series expansion of ξθ(`lt, `rt ) near 0. Note that

ξθ(ε, ε) ≈ ξθ(0, 0) +
N∑
a=0

ψ(a | 0, R) ∂

∂`θ
Ψθ

(
a, 0

)
+ ε

(
N∑
a=0

(
∂

∂`l
ψ(a | 0, R) + ∂

∂`r
ψ(a | 0, R)

)
Ψθ

(
a, 0

))
. (A.28)

From Equation A.29,

∂

∂`θ
ψ(a | 0, R) = (1− 2λ)ψ(a | 0, R)fR(0)

(
a−Nλ
λ(1− λ)

)
, (A.29)

and since Ψθ

(
a, 0

)
= 1,

N∑
a=0

∂

∂`θ
ψ(a | 0, R)Ψθ

(
a, 0

)
= (1− 2λ)fR(0)

N∑
a=0

ψ(a | 0, R)
(
a−Nλ
λ(1− λ)

)
,

which equals (1 − 2λ)fR(0)E[a − Nλ]/[λ(1 − λ)] where the expectation is with respect to a ∼
Binomial(N,λ). Thus, E[a−Nλ] = 0. Substituting this result into Equation A.28 yields

ξθ(ε, ε) ≈ 1 +
N∑
a=0

ψ(a | 0, R) ∂

∂`θ
Ψθ

(
a, 0

)
.

Finally, recall that E[`θt+1 | `t = (ε, ε)] > `θt = ε ⇔ ξθ(ε, ε) > 1 ⇔
∑N
a=0 ψ(a | 0, R) ∂

∂`θ
Ψθ

(
a, 0

)
> 0.

From Equation A.10,

∂

∂`
Ψθ(a, 0) =

[
1− 2λ̂(θ)

][
fL(0)− fR(0)

] ( a−Nλ̂(θ)
λ̂(θ)

[
1− λ̂(θ)

]) ,
so

N∑
a=0

ψ(a | 0, R) ∂

∂`θ
Ψθ

(
a, 0

)
= N

[
1− 2λ̂(θ)

][
fL(0)− fR(0)

]
λ̂(θ)

[
1− λ̂(θ)

] (λ− λ̂(θ)),

which exceeds 0 if and only if
[
1 − 2λ̂(θ)

][
λ − λ̂(θ)

]
> 0. With Strong projection, λ̂r > λ > 1/2,

so [1 − 2λ̂r][λ − λ̂r] > 0. Hence, `rt is locally a submartingale in the neighborhood of ` = (0, 0).
Likewise, λ̂l < 1/2, so [1−2λ̂l][λ− λ̂l] > 0. Hence, `lt is locally a submartingale in the neighborhood
of ` = (0, 0).
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Proof of Proposition 7.

Proof. We must show that 〈`t〉 is unstable at each ˆ̀. First consider a limit point in which types
agree, ˆ̀ = (0, 0). At this belief, the observed frequency of A converges to λ, while right types
anticipate λ̂r > λ. By Proposition 4, `rt is unstable near 0. `lt must also be unstable near 0: by
Lemma 8, there exists an ε > 0 such that `rt is submartingale so long as `lt < ε. If `lt < ε for all t,
then `rt diverges to ∞ and the frequency of A converges to 1, which necessarily implies `lt → ∞, a
contradiction. The analogous argument holds at any potential limit point ˆ̀: for some θ ∈ {l, r},
`θt is immediately unstable by Proposition 4, and the martingale property of the unstable `θt , which
moves away from ˆ̀θ in expectation, implies `θ′t θ′ 6= θ necessarily exits a neighborhood about ˆ̀θ′ ,
contradicting stability of `θ′t .

Proof of Lemma 8.

Proof. The proof of Lemma 7 shows that E[`θt+1 | `t = (ε, ε)] > `θt = ε⇔
[
1− 2λ̂(θ)

][
λ− λ̂(θ)

]
> 0.

This holds for λ̂r > λ > 1/2, but fails for λ̂l ∈ (1/2, λ). Hence `rt is locally a submartingale
in the neighborhood of ` = (0, 0) whereas `lt is locally a supermartingale in the neighborhood of
` = (0, 0).

Proof of Proposition 8.

Proof. This follows from a direct application of Proposition 4. In any stable equilibrium, all players
who think their taste matches the majority taste must take the majority action, X. In Case 1
(θ̃ < 0), all right types (measure λ) and all left types with λ̂(θ) < 1/2 (measure G(θ̃)) take the
majority action. By Proposition 4, this outcome is stable if and only if no type expects to observe
a share greater than G(θ̃) + λ take X at their respective equilibrium beliefs. This is true so long as
G(θ̃)+λ > max

{
1− λ̂(θ), λ̂(θ)

}
. In Case 2 (θ̃ > 0), some right types think they are in the minority.

Now all left types (measure 1 − λ) and right types with λ̂(θ) > 1/2 (measure 1 − G(θ̃)) take X.
Hence, by Proposition 4, this outcome is stable if and only if (1−λ)+1−G(θ̃) = 2− (λ−−G(θ̃)) >
max

{
1− λ̂(θ), λ̂(θ)

}
.

Proof of Proposition 9.

Proof. As N grows large, for any θ, there exists some (X,X ′) such that πθ2(X,X ′) is arbitrarily close
to 1. The only case in which this does not imply that a2/N is arbitrarily close to 0 or 1—nearly
all players take the same action—is when either πl2(B,A) ≈ 1 and πr2(B,A) ≈ 1 or πl2(A,B) ≈ 1
and πr2(A,B) ≈ 1. That is, we do not observe a (nearly) uniform herd in period 2 whenever
both types grow confident in a state where it is optimal for players with opposing tastes to take
different actions. I focus on the case where πθ(B,A) is arbitrarily close to 1 for each θ.64 So
a2/N ≈ λ. More precisely, by the Strong Law of Large Numbers, there exists some ε(N) > 0 such
that a2/N = λ− ε(N), where ε(N)→ 0 as N →∞. Now we evaluate the perceived likelihood ratio
of observing a2/N ≈ λ − εN in state (B,A) with (B,A) for a right type. Notice that a right type
expects to observe a2/N = λ̂r − ε̂(N) for some ε̂(N) > 0 such that ε̂(N) → 0 as N → ∞. So this
likelihood ratio is

64Proving the alternative case in which all types are arbitrarily confident in (A,B) is essentially identical.
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Lr =


 P̂r

θ(
Xn2 = A

∣∣ ω ∈ ΩBA
)

P̂r
θ(
Xn2 = A

∣∣ ω ∈ ΩAB
)
a2/N 1− P̂r

θ(
Xn2 = A

∣∣ ω ∈ ΩBA
)

1− P̂r
θ(
Xn2 = A

∣∣ ω ∈ ΩAB
)
1−a2/N


N

=
(

λ̂r − ε̂(N)
1− λ̂r + ε̂(N)

)λ−εN (1− λ̂r + ε̂(N)
λ̂r − ε̂(N)

)1−λ+εN
=
(

λ̂r − ε̂(N)
1− λ̂r + ε̂(N)

)2λ−1−2εN
(A.30)

Note that (Lr)1/N > 1 if and only if both λ̂r > 1
2 + ε̂(N) and λ > 1

2 + ε(N). Since λ̂r > λ > 1
2 ,

this holds for sufficiently large N . So (Lr)1/N > 1 implies Lr → ∞ as N → ∞. So right types in
period 3 are arbitrarily confident that A is their optimal choice.

Left types, however, draw the opposite inference. As above,

Ll =
(

λ̂l − ε̂l(N)
1− λ̂l + ε̂l(N)

)2λ−1−2ε(N)

, (A.31)

so (Ll)1/N > 1 if and only if both λ̂l > 1
2 + ε̂l(N) and λ > 1

2 + ε(N). Since λ̂l < 1
2 , this fails to

hold for sufficiently large N . So (Ll)1/N < 1 implies Ll → 0 as N → ∞. Hence left types in t = 3
grow arbitrarily confident that A is their optimal choice. Thus all players enter t = 3 arbitrarily
confident that A is their optimal choice. Only those in t = 3 with strong contrary signals take B,
but the measure of such players goes to 0 as N →∞. Hence a3/N → 1 as N →∞. Once a3/N ≈ 1
is observed, players remain confident that A is optimal for all types. As all ω ∈ ΩAA are absorbing
states, beliefs remain confident that ω ∈ ΩAA for all future periods.

Proof of Proposition 11.

Proof. Let ω := (L, λ) and ω := (R, λ). Suppose the history up to time t is a herd on A: ht =
hAt . For any finite t, this occurs with positive probability. By Lemma 9, for large t, this initial
history moves both πl(ω) and πr(ω) close to 1. Hence, given arbitrary neighborhoods about beliefs
degenerate on states ω and ω, denoted N (ω) and N (ω), respectively, with positive probability,
πlt ∈ N (ω) and πrt (ω) ∈ N (ω) for some finite t. Now we must simply show that the joint-belief
process is stochastically stable within these neighborhoods. I build on the stability arguments of
Proposition 4, extending the logic to larger state spaces (the state space considered in Proposition 4
is binary). As above, I work with likelihood ratios. Only for the purpose of this proof, I define left-
type likelihood ratios relative to state ω, but right-type’s relative to ω; let `lt(ω) := πl(ω)/πl(ω) and
`rt (ω) := πr(ω)/πr(ω). Let `lt = (`lt(L, λ), `lt(R, λ), `lt(R, λ)) and `rt = (`rt (L, λ), `rt (L, λ), `rt (R, λ)).
With these definitions, πlt ∈ N (ω) and πrt ∈ N (ω) ⇔ for each θ = l, r, `θt is in a neighborhood
about the origin, 0 ∈ R3

+.
Step 2: Linearized System Like Proposition 4, I show the stability of the linear approxi-

mation of the system near fixed points ˆ̀l = 0 and ˆ̀r = 0. The system is multi-dimensional; let
`θt+1 = ϕ(a, `θt ) define the transition function for a θ-type’s vector of beliefs, and each element
evolves according to `θt+1(ω) = ϕθ(a, `θt , ω) := `θt (ω)ψθ(a | `θt , ω)/ψθ(a | `θt , ω∗) where ω∗ = ω if
θ = r, and ω∗ = ω if θ = l.

For each θ, the system is approximated by the Jacobian of ϕθ(a, `θ) at ˆ̀θ = 0. Note that the
(ω′, ω) term of the Jacobian (the derivative of the `θt (ω′) transition function with respect to belief
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`θt (ω)) is
∂

∂`(ω)ϕ(a, `, ω′) = `(ω′) ∂

∂`(ω)

(
ψθ(a | `, ω′)
ψθ(a | `, ω∗)

)
+ ∂`(ω′)
∂`(ω)

(
ψθ(a | `, ω′)
ψθ(a | `, ω∗)

)
(A.32)

which, evaluated at ` = 0, is 0 when ω′ 6= ω—off-diagonal terms of the Jacobian are 0. Hence, the
approximate system is diagonal: to a first-order approximation, the likelihood ratio of ω′ has no
effect on the evolution of the likelihood ratio of ω 6= ω′. As such, the fixed point is stable if each
dimension satisfies the uni-dimensional stability criterion developed in Proposition 4. Accordingly,
the remainder of this proof follows the same steps as Proposition 4, but within this modified envi-
ronment; for brevity, the arguments here are terse—some analogous derivations in 4 are referenced
for details.

From Proposition 4, `θt will remain in the neighborhood of 0 so long as for each θ, the “stability
coefficient” (Equation 11) for each ω and a ∈ {0, 1, ..., N} is less than one at ˆ̀l = 0, ˆ̀r = 0:

χθ(ˆ̀l, ˆ̀r, ω)
∣∣∣∣
(ˆ̀l,ˆ̀r)=(0,0)

< 1, (A.33)

where

χθ(ˆ̀l, ˆ̀r, ω) =
N∏
a=0

(
∂

∂`(ω)ϕθ
(
a, `θ, ω

))ψ(a,ˆ̀l,ˆ̀r)
, (A.34)

and ψ(a, ˆ̀l, ˆ̀r) is the true probability of observation a at beliefs ˆ̀l, ˆ̀r. Note ψ(a,0,0) = 1⇔ a = N ,
and 0 otherwise; all agents play A at these beliefs. So, χθ(0,0, ω) < 1 ⇔ ∂

∂`(ω)ϕθ
(
N,0, ω

)
< 1.

From A.32, for any ω, ∂
∂`(ω)ϕθ

(
N, `θ, ω

)
= ψθ(N | 0, ω)/ψθ(N | 0, ω∗) = αθ(0, ω)/αθ(0, ω∗), where

αθ(`θ, ω) is the probability a random player chooses A at beliefs `θ according to a θ-type. (At
`l = 0, `r = 0, left types think all left types choose A, and right types think all right types choose
A.) First consider θ = l, so ω∗ = ω = (L, λ), and αl(0, ω∗) = 1 − λ. If ω = (ζ, λ) for either
ζ ∈ {L,R}, then αl(0, ω)/αl(0, ω∗) = (1 − λ)/(1 − λ) < 1 since λ < λ, so χl(0,0, ω) < 1. For
ω = (R, λ), αl(0, ω)/αl(0, ω∗) = (1 − λ)/(1 − λ) = 1, and the stability test is inconclusive. Before
turning to the inconclusive case, consider θ = r: ω∗ = ω = (R, λ), and αr(0, ω∗) = λ. If ω = (ζ, λ)
for either ζ ∈ {L,R}, then αr(0, ω)/αr(0, ω∗) = λ/λ < 1, so χr(0,0, ω) < 1. For ω = (L, λ),
αr(0, ω)/αr(0, ω∗) = (1− λ)/(1− λ) = 1. So, for each type, we’ve established stability along each
dimension except for one.

To deal with the “inconclusive” cases where χθ(0,0, ω) = 1, I follow Proposition 4, and show
that ∂

∂`θ(ω)χθ(0,0, ω) < 0—the stability coefficient is less than one at all points in the neighborhood
of the fixed-point (excluding the fixed point itself). Analogous to Equation A.10,

∂

∂`θ(ω) logχθ(ˆ̀l, ˆ̀r, ω)
∣∣∣∣
(ˆ̀l,ˆ̀r)=(0,0)

= 2
N∑
z=0

ψ(a,0,0) ∂

∂`θ(ω)

(
ψθ(a | 0, ω)
ψθ(a | 0, ω∗)

)
. (A.35)

For ω = (ζ, λ) and ω∗ = (ζ∗, λ∗), analogous to Equation A.5

∂

∂`θ(ω)

(
ψθ(a | `θ, ω)
ψθ(a | `θ, ω∗)

)
=
(
ψθ(a | `θ, ω)
ψθ(a | `θ, ω∗)

){
∂pθ(`θ)
∂`θ(ω)

[
[1−2λ]fζ

(
pθ(`θ)

)( a−Nαθ(`θ, ω)
αθ(`θ, ω)

[
1− αθ(`θ, ω)

])

− [1− 2λ∗]fζ∗
(
pθ(`θ)

)( a−Nαθ(`θ, ω∗)
αθ(`θ, ω∗)

[
1− αθ(`θ, ω∗)

]) ]}, (A.36)
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where pθ(`θ) is the probability of location state L according to a θ-type. For each θ, let Σθ be
the sum of the components of `θ; for θ = l, pl(`l) = (1 + `l(L, λ))/(1 + Σl), and for θ = r,
pl(`l) = (`r(L, λ) + `r(L, λ))/(1 + Σr). Note that pl(0) = 1 and pr(0) = 0. Note A.35 is less than
0 so long as A.36 is less than 0 when evaluated at `l = 0, `r = 0, and a = N . Assuming λ = λ∗

(which is always so in any “inconclusive case”), this holds if and only if

Cθ(ω) := ∂pθ(0)
∂`θ(ω) [1− 2λ∗]

[
1− αθ(0, ω∗)

][
fζ
(
pθ(0)

)
− fζ∗

(
pθ(0)

)]
< 0. (A.37)

Hence I need only show show C l(R, λ) < 0 and Cr(L, λ) < 0. From the definition of pθ above,
∂pl(0)/∂`l(R, λ) < 0, and ∂pr(0)/∂`r(L, λ) > 0. So, θ = l ⇒ ω∗ = (L, λ) ⇒ C l(R, λ) < 0 ⇔
λ[1 − 2λ]

[
fR(1) − fL(1)

]
> 0, which holds since fR(1) > fL(1) and λ < 1

2 . And, θ = r ⇒ ω∗ =
(R, λ)⇒ Cr(L, λ) < 0⇔ (1− λ)[1− 2λ]

[
fL(0)− fR(0)

]
< 0, which holds since fL(0) > fR(0) and

λ > 1
2 .

Proof of Proposition A.1.

Proof. Let λ, λ be arbitrary elements of Λ with λ < λ. I show that there exists a confounding
belief that puts positive weight on states ω := (L, λ) and ω := (R, λ), and zero weight on all other
states. At this belief, players are nearly certain the state is one of ω or ω, but cannot discern which
is true. We want to find π̂l and π̂r such that Pr(at | π̂l, π̂r, L, λ) = Pr(at | π̂l, π̂r, R, λ), which
holds so long as the probability any random player chooses A given these beliefs is equal in each
state of the world. Denote this probability α(π̂l,π̂r, ω). When ω = (ζ, λ) for ζ ∈ {L,R}, then
α(π̂l,π̂r, ω) = λ

[
1 − Fζ(1 − π̂r)

]
+ (1 − λ)Fζ(1 − π̂l). I now construct π̂l and π̂r that meet the

condition for “confounding” beliefs, above. For each θ, parameterize beliefs by some pθ ∈ (0, 1): let
π̂θ(ω) = pθ, π̂θ(ω) = 1− pθ, and π̂θ(ω) = 0 for all ω 6= ω, ω. Importantly, we can write both pl and
pl as a function of some neutral belief p. Note that pθ is the belief that ω = ω held by an agent
with taste θ after history h. Consider a neutral observer who observes history h, but does not yet
know her taste—say her belief that ω = ω is p. If she then learns her taste is θ, then pθ must follow
from Bayes’ rule as a function of p: pl(p) = Pr(ω | h, θ = l) = (1− λ)p/((1− λ)p+ (1− λ)(1− p))
and pr(p) = Pr(ω | h, θ = r) = λp/(λp + λ(1 − p)). Clearly, for each θ, limp→0 p

θ(p) = 0 and
limp→1 p

θ(p) = 1. Now consider the condition for confounding beliefs: Pr(at | π̂l, π̂r, L, λ) = Pr(at |
π̂l, π̂r, R, λ)⇔ α(π̂l,π̂r, ω) = α(π̂l,π̂r, ω)⇔

λ
[
1− FL(pr(p))

]
+ (1− λ)FL(pl(p)) = λ

[
1− FR(pr(p))

]
+ (1− λ)FR(pl(p)). (A.38)

I now argue that there must exist p ∈ (0, 1) such that Equation A.38 holds. At p = 0, the left-hand
side is λ, and the is λ. At p = 1, the left is 1− λ, and the right is 1− λ. Since λ < λ, the left-hand
side is less than the right at p = 0, but greater than than the right at p = 1. By continuity, there
exists p ∈ (0, 1) so that Equation A.38 holds. Hence, I’ve constructed a pair of confounding beliefs,
π̂l and π̂r.

Proof of Proposition A.2.

Proof. Let λ, λ be arbitrary elements of Λ with λ < λ, and let ω := (L, λ) and ω := (R, λ). Consider
the confounding belief constructed in the proof of Proposition A.1, above. That is, π̂l and π̂r such
that, for each θ, π̂θ(ω) = pθ, π̂θ(ω) = 1 − pθ, and p̂iθ(ω) = 0, where pl(p) = Pr(ω | h, θ = l) =
(1 − λ)p/((1 − λ)p + (1 − λ)(1 − p)) and pr(p) = Pr(ω | h, θ = r) = λp/(λp + λ(1 − p)), and
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p is the value that solves Equation A.38. I show that the neutral belief process—the belief of a
player who does not know her taste—is stochastically stable in the neighborhood of p. If this is so,
then taste dependent beliefs converge with positive probability to the confounding belief identified
above. Let the neutral likelihood ratio of state ω relative to ω after history ht be denoted by `nt .
Let ψ(a | `nt , ω) be the probability of observation a ∈ {0, 1, ..., N} in state ω given neutral belief `nt .
Fix ω = ω. Then process 〈`nt 〉 evolves according to `nt+1 = `nt ψ(a | `nt , ω)/ψ(a | `nt , ω) := ϕ(a, `nt )
with transition probability ψ(a | `nt , ω). We want to show this process is stable in the neighborhood
of ˆ̀n := p/(1 − p), where p generates the confounding belief, given above. By definition of the
confounding belief, ˆ̀n is a fixed point of the neutral-belief Markov process: ˆ̀n = ϕ(a, ˆ̀n) for any
a. We can use Lemma 6 to assess whether ˆ̀n is stable. That is, it must be that χ(ˆ̀n) < 1, where

χ(ˆ̀n) =
∏N
a=0

(
∂
∂`ϕ(a, ˆ̀n)

)ψ(a|ˆ̀n,ω)
. If this Markov process is also a martingale, then χ(ˆ̀n) < 1 (see

Smith and Sørensen (2000), Theorem 4). Clearly, 〈`nt 〉 forms a martingale conditional on ω = ω:
E[`nt+1 | `nt ] =

∑N
a=0 ψ(a | `nt , ω)ϕ(a, `tn) = `tn

∑N
a=0 ψ(a | `nt ω) = `nt .
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