
CSCI E-7: Great Ideas in Computer Science Handout #1

CSCI E-7: Introduction to Computer Science with Python Handout #1

I. Overview

Computer Science E-7 is a broad introduction to some of the most important
concepts in the field of computer science. To paraphrase Alan Biermann, this course is
for people who sometimes wonder

“ … what is meant by a Python module, a file server, ethernet, TCP/IP, or Pretty
Good Privacy … You have been told you need a compiler, but why do you need it?
What does it actually do? Watch out for certain types of problems— they are ‘NP-
complete,’ and you may not be able to compute the answer. You want to have a neat
graphics picture jump onto your Web page when you push the button labeled
‘surprise.’ Can you make it happen? Your laptop runs at 2.5 gigahertz: that is two
and one-half billion what per second? (And, by the way, what exactly is a
computer?)”1

This course covers a superset of the content in Computer Science E-10a, albeit in a
different programming language. The lecture videos are being recorded from Dr.
Leitner's spring semester Harvard College course, Computer Science 1: Great Ideas in
Computer Science with Python. This course will expose students to

❶ The principles and practices of functional and object-oriented programming
(OOP) using a methodology that places a high value on programs that not
only generate the “right answers,” but that are also easy to read, maintain,
and modify. These elements are important in any programming, regardless
of the specific language used.

 Excerpted from page xiii (the Preface) in Great Ideas in Computer Science with Python, by Alan W. Biermann and Dietolf
1

Ramm. Published by the MIT Press. ISBN: 9780262024976

Spring, 2022 Dr. Henry H. Leitner

CSCI E-7: Great Ideas in Computer Science Handout #1 Much of the programming will be done using Python, through
which we will investigate fundamental data structures and their
algorithms.

 Preliminary programming exercises will utilize HTML and the
Scratch environment, free software that runs on both Mac OS and
Windows OS platforms.

❷ The mathematical, statistical, and computational methods that will enable you
to think critically about data as it is employed in fields of inquiry across the
Faculty of Arts and Sciences, thereby meeting the Quantitative Reasoning with
Data Requirement (QRD). You will be able to analyze real data, draw inferences
and make predictions to answer questions – as well as understand the
limitations of these methods. Results can be summarized and communicated
through visualization.

❸ The landscape of computer science as it exists today, with some reference to
its past and future, as this will enable us to touch on a variety of really
fascinating topics and intellectual paradigms, i.e., some of the “Great Ideas in
Computer Science,” such as 2

Ø Simulation: Suppose you wish to observe something, but you cannot
because it’s too expensive or too slow or just impossible to observe.
You might be able to get your wish if you can successfully simulate
that “thing” (e.g., a physical process or experiment). This means you
must discover a model for that thing, program it, run the program
and do your observations. If your model is good, you will be able to
see what would have happened with the original thing, had you been
able to observe it.

Ø Ethics: “Technology is not neutral,” says Professor Nehran Sahami, a
faculty member at Stanford who formerly worked at Google as a
senior research scientist. “The choices that get made in building
technology then have social ramifications.” Consider the algorithms
that get implemented in autonomous vehicles and weapon systems, or
the fact that social media sites such as Twitter can be responsible for
the spreading of “fake news.”

Ø Computer Architecture: When you purchased your last laptop computer,
what did you actually get? In fact, you received hardware that
executes machine language instructions in the fetch-execute cycle at a
very high speed, some memory, a hard drive, and some input-output
devices (like a keyboard and display). You will learn what machine
instructions are, how the fetch-execute cycle works, and how memory
is used to enable the machine to do its job. You will learn the operation
and mechanisms of the bare-bones computer and we’ll demystify a lot

 A few of these summaries are paraphrased from Biermann and Ramm’s descriptions.2

Spring, 2022 Dr. Henry H. Leitner

CSCI E-7: Great Ideas in Computer Science Handout #1 of computer jargon that you might not otherwise understand.

Ø Security and Privacy: While computers and networking are critically
important in our lives, they also can become vehicles of mischief.
What if our personal secrets, our medical information, and/or our
financial records are stolen and sold online? What if we become 3

dependent on machines and suddenly they cease to work because of
an electronic attack? We will explain the kinds of attacks that might be
brought against individuals or organizations. And we’ll describe some
of the defenses that one can use, including various encryption
methods.

Ø Computer Communications: You will learn what a Local Area Network
(LAN) is, and how packets get shipped around. You will learn also
about Wide Area Networks, especially the Internet, what they are and
how they work. You will learn some networking terminology (UDP,
TCP/IP) and you will learn a bit about addressing schemes, network
servers, and what the “Internet of Things” is all about.

Ø Program Execution Time: We will discuss a limitation of computer
science, describing a major hitch that prevents scientists from solving
some important problems. It turns out that it could take a billion years
of computation to solve certain problems, unless quantum computing
comes to the rescue . Even if conventional machines get much faster,
these problems will continue to be out of reach. We will introduce the
ideas of tractability, referring to problems that usually can be solved in
practical situations, and intractability, referring to problems that tend
to require too much execution time to solve. We’ll provide examples of
both kinds of problems so that you may gain some intuition for these
phenomena.

Ø Noncomputability: There is a class of very strange problems that
mathematicians have proven can never be solved by any computer
within known computational paradigms. This mystical and elusive
class of programs seems to place an impenetrable blockage to
progress in certain aspects of computer science.

❹ One or more of these additional topics, as time allows, such as:

Ø Parallel Computation: If a problem requires too much time to solve with
one computer, perhaps we could spread it across many machines,
thousands or millions of them, and then solve the very time-
consuming calculation. We investigate this idea with both positive and

 See, for example: http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/3

Spring, 2022 Dr. Henry H. Leitner

http://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

CSCI E-7: Great Ideas in Computer Science Handout #1 negative results. Though many computations can be speeded up
tremendously by putting them on parallel machines, one cannot
always do this easily and sometimes the speedup is not enough.

Ø Computer Graphics: How do computers render and manipulate
photographs, drawings and movies — some of which may involve
pictures of things that do not exist (or perhaps could never exist)?
Why is human face recognition a difficult computational problem for
computers (not for humans), and what sort of 3D modeling techniques
are being developed for face modeling and animation?

Ø Artificial Intelligence: Theories of machine intelligence have evolved
over several decades; we can examine the idea of representing
knowledge and what it means to use that knowledge to “understand,”
as well as the possibility of automating the learning process. We can
also study problem-solving and how knowledge contributes to the
ability to solve problems. In addition, we can examine how to use this
theory to build machines that seem to be intelligent. Some examples
are a speech-recognition system, a game-playing program that
improves performance from experience, and a so-called expert system.

Ø Low-level Machine Architecture: Out of very simple logic gates, such as
the AND, OR and NOT, we can easily create circuits that compute
primitive and complex functions. It’s also interesting to understand
how such circuits are embodied by transistors and very large scale
integration (VLSI) chips.

Ø Language Translation: But how can we type Python programs or
programs in other languages into our computer and expect them to
work, given that the basic computer hardware can only understand
very primitive instructions? The solution is to build a translator that
will transform the language that we prefer into a form that the
machine can process. You will learn what people mean when they say
they “compiled” a program, and you will do some compiling yourself.

6 Although we believe the content of CSCI E-7 is fairly straightforward, this is one
of those courses where the homework can be time-consuming. It is not unusual for
students to spend as many 12-15 (or more) hours per week doing the problem sets. If
you have other major time commitments (e.g., a part-time job, other courses, a family,
friends, hobbies, etc.), then you may wish to reconsider whether or not to take this
course. You have been warned!

Spring, 2022 Dr. Henry H. Leitner

CSCI E-7: Great Ideas in Computer Science Handout #1
II. Staff

 Faculty: Dr. Henry Leitner
51 Brattle St., rm. W-719
(617) 495-9096
email: leitner@harvard.edu

Dr. Leitner will generally be available for consultation on Wednesday mornings. 4

Because of the uncertainties due to the on-going Covid pandemic, it’s probably best to
arrange an appointment via email.

 Teaching Assistants: Mr. Benjamin Basseri (head TA): basseri@cs50.harvard.edu

Mr. Nabib Ahmed: nahmed@college.harvard.edu

Mr. Thomas Ballatore: ballatore@cs50.harvard.edu

Ms. Victoria Gong, victoriagong@college.harvard.edu

Ms. Apekshya Panda, apekshya@mit.edu

Ms. Lara Zeng: lzeng@college.harvard.edu

others, if enrollment warrants

The TAs are responsible for grading problem sets and for helping students, in
general, with the material covered in this course. The head TA will assist with a
number of administrative matters, such as maintaining the course website.

Each student is expected to attend a semi-mandatory 60-90 minute section
meeting every week; these section meetings are run entirely by the teaching
assistants, and will probably be held online only via Zoom due to the pandemic.
The precise day and times will be announced later on. Section meetings will begin
the week of January 30.

Up-to-date office hours for the various teaching assistants will be posted in a
Google calendar on our course website.

 … and occasional “consolation”4

Spring, 2022 Dr. Henry H. Leitner

mailto:basseri@cs50.harvard.edu
mailto:sradev@conahmed@college.harvard.edullege.harvard.edu
mailto:ballatore@cs50.harvard.edu
mailto:victoriagong@college.harvard.edu
mailto:apekshya@mit.edu
mailto:lzeng@college.harvard.edu

CSCI E-7: Great Ideas in Computer Science Handout #1  

III. What to Read

You should acquire the habit of consulting our course website often (perhaps once
every couple of days). The URL is:

https://canvas.harvard.edu/courses/96344

Optional reading materials for this course are for sale at the Harvard COOP
bookstore and available through Amazon or other online sellers:

Building Python Programs (A Back to Basics
Approach) 1st edition, published by Addison-
Wesley, 2020. ISBN #978-0135205983. Although
this book is not required for purchase, it is highly
recommended.

A less costly text is Think Python (2nd edition), by
Allen B. Downey. Published by O'Reilly Press, 2016.
ISBN #978-1491939369

Although we do not suggest that you acquire any of
the following books at this time, some of these texts
shown below may be of interest to those of you who
wish to explore specific topics in more depth than
we will have time for in class.

Computer Science, An Overview (13th edition), by J.
Glenn Brookshear and Dennis Brylow. Published
by Pearson, 2019. The ISBN # is 978-0134875460.
This book offers a clear and concise survey of
computer science, covering a wealth of topics and
presenting the scope of the discipline as well as
the terminology in the field.

 A Balanced Introduction to Computer Science (3rd

edition), by David Reed. Published by Prentice-
Hall, 2010. The ISBN # is 9780132166751.

Spring, 2022 Dr. Henry H. Leitner

https://canvas.harvard.edu/courses/96344

CSCI E-7: Great Ideas in Computer Science Handout #1

Learn to Program with Scratch: A Visual Introduction
to Programming with Games, Art, Science, and Math,
by Majed Marji. Published by No Starch Press, San
Francisco, 2014. The ISBN # is 9781593275433.

The Linux Command Line: A Complete Introduction
(2nd edition), by William Shotts. Published by No
Starch Press, San Francisco, 2019. The ISBN # is
978-1593279523. Since you will be writing your
Python programs in a Linux environment, you
may find it helpful to learn a bit more about this
important operating system. A free PDF version
is available at https://linuxcommand.org/
tlcl.php

IV. The Problem Sets, the Term Project, and Grading

The majority of the assignments will involve problem solving using a Mac OS or
Windows-based personal computer. Some of the homework exercises will be of the
short “paper-and-pencil” variety. You will be required to do “electronic submission,”
a process we will describe in class.

Please do not attempt to finish up an assignment during lecture or during section!
Problem sets will be due, in general, prior to 5:00 PM on Fridays.

Each student is allotted a budget of 5 no-penalty “late days” for use throughout
the term. Additional late days may be “purchased” for a 6-point penalty each. Extra
no-penalty late days may ordinarily be obtained only by submitting a doctor's note to
Dr. Leitner. Exceptions to these rules may be sought for unusual circumstances by

Spring, 2022 Dr. Henry H. Leitner

https://linuxcommand.org/tlcl.php
https://linuxcommand.org/tlcl.php

CSCI E-7: Great Ideas in Computer Science Handout #1 petition. Do not fritter away the no-penalty late days early in the semester; you may
find yourself wishing you had saved a few toward the end of the semester. If
electronic submission of your work is more than 10 minutes late arriving, then it
will be considered a full day late. At section meetings and during regular office
hours, your assigned TA will return your graded homework to you. As I usually
plead, please, please

Don't fall behind on your problem sets!

Just as you cannot expect to learn how to drive a car by reading about it or by
watching other people do it, the same holds true for working with computer hardware
and software.

Get started on the problem sets early — this is one course you simply cannot
“cram” for at the last minute, so don’t even try! We cannot stress this strongly enough.
Remember that some of you may find the problem sets to be time-consuming on
occasion, so please take your other commitments into consideration.

Final grades for students enrolled in this course will be based on

Ø the homework (60%),
Ø one open-book exam (20%),
Ø a final term project (20%),
Ø ... and your teaching assistants’ appraisal

of individual achievement (priceless).

Undergraduate-credit students will have two distinct alternatives for the term
project, described below. Graduate-credit students must complete the second option
(a Python programming project).

⇒ An original paper that is presented in the form of a website, covering in depth,
a “Great Idea” in computer science. The subject matter does not have to be
one of the topics we have explicitly touched on in class this year. A
colleague of mine at Stanford named Eric Roberts has been teaching a
course named “The Intellectual Excitement of Computer Science” for
several years; on our course website I will post links to some of the better
projects completed by both Harvard students as well as students in Prof.
Roberts’ course over the past few years. If you are interested in this option,
your project need not have animations or flashy graphics, but we DO expect
the website to be well-organized and to present your “paper” in a form
that’s easy to navigate.

⇒ The alternative option is to write an original program in Python that will run
on the ide.cs50.io platform using Python. We will post some specific 5

 You may also use an integrated development environment (IDE) for Python on your personal computer, such as
5

Spyder or PyCharm.

Spring, 2022 Dr. Henry H. Leitner

CSCI E-7: Great Ideas in Computer Science Handout #1 examples of Python-based projects on our website later on.

A document describing the term project in more detail (along with specific
suggestions) will be handed out later in the semester.

V. A Commentary On Programming Ethics6

A computer program written to satisfy a course
requirement is, like a paper, expected to be the
original work of the student submitting it. Copying
a program from another student or from any other
source is a form of academic dishonesty, as is
deriving a program substantially from the work of
another.

Persons who do not know how to program a computer are understandably
puzzled about how the concept of plagiarism could possibly be applicable in a
computer course. Is a program not an exact object, like a number, and must not any
two correct solutions to a programming problem be identical? The truth is quite
different. Superficial appearances aside, computer programs more closely resemble
essays than numbers. The copyright laws recognize this; so do standards of behavior
at Harvard.

Two programmers may adopt radically different approaches to solving the same
problem, as different as the ideas of two students asked to write critically on the same
painting. Very small programs do not admit this much variability in overall design,
but anything over a page long certainly does, unless the design itself was specified as
part of the exercise. But even when two programs are based on the same overall
design, the variation in possible form of expression is vast.

Programming courses attempt to teach graceful and forceful forms of expressions
for computational ideas, but every programmer has idiosyncrasies of style and
vocabulary. The likelihood of two programmers independently creating identical
programs of more than two or three lines in length is no larger than the likelihood of
two writers independently writing identical paragraphs. And programs that are
identical except for their choice of names (for example, one has “x” everywhere the
other has “y”) are as improbable as two short stories that are identical except for the
names of the characters. Paraphrase is as possible, and as dishonest, with programs as
with papers; two programs can be copies of each other even though no single line of
one is identical to any line of the other. There should be little confusion about what is
legitimate and what is not in the production of a computer program; the rule is simple,

 The principal author of this section is Prof. Harry R. Lewis, Harvard College Professor of Computer Science at 6

Harvard.

Spring, 2022 Dr. Henry H. Leitner

CSCI E-7: Great Ideas in Computer Science Handout #1 simpler than in expository writing, since programming generally does not involve
library research and use of sources: Do not submit as your own work a program
based on the work of another! Violations of this rule is plagiarism; it is
dishonorable behavior, and the penalty for it is requirement to withdraw from
Harvard College.

Two obvious "exceptions" to this rule may be noted in passing. Courses sometimes
supply the main idea or even some of the text of a program that is to be completed as
an exercise; naturally, students are expected to use this assistance. And there is merit in
“copying from oneself” in a course that develops cumulative programming skills.
Here programs differ from papers; no author would want to write two different pieces
with several paragraphs in common, but with computer programs, this is not unusual.
A skill taught in programming courses is how NOT to reinvent the wheel; when a
small phrase or short sentence has proven useful and reliable in one program, a
programmer should feel free to reuse it if the same thing needs to be said in another
program. Such clauses play the role of aphorisms; they make a point but they are not
the main point of the piece being written.

Of course, neither of these examples obscures the basic point that a program
submitted as original work should not have been derived from the work of another
unless the course has specifically permitted this.

How much help on a programming exercise may you obtain before you are
stealing, rather than being assisted? Teaching assistants and user assistants know the
limitations of what is fair and legitimate; their goal is to help you understand how to
solve your own problem, not to solve it for you. If you seek help from other students
you are treading on much thinner ice. When a student answers a simple factual
question which could have been answered out of a manual, no violation of principle is
involved; it is not dishonest to ask another student the value of PI or the statement of
the Pythagorean Theorem. But the more your request is for part or all of the solutions to
the programming exercise itself, rather than for general factual information, the less
acceptable it is. In the extreme case one student asks for and receives the actual text of
a program which both were to have created independently; in this case both are guilty
of academic dishonesty.

In the Harvard College Handbook for Students is a section related to collaboration:

It is expected that all homework assignments,
projects, lab reports, papers, theses, and
examinations and any other work submitted for
academic credit will be the student’s own. Students
should always take great care to distinguish their
own ideas and knowledge from information derived
from sources.

In some
courses students are expected to work in teams on the implementation of very large
programs. Just because you see two students huddled over the same terminal and
discussing programs in great detail, do not assume that this is standard and acceptable
behavior in your course! If you have any doubt about what type of collaboration is

Spring, 2022 Dr. Henry H. Leitner

CSCI E-7: Great Ideas in Computer Science Handout #1 permissible, do not make assumptions: ask the instructor. A general argument that you
were only doing what you saw others doing is not a legitimate defense.

VI. Diversity, Inclusion and Other Matters

I would like to create a learning environment in our class that supports a diversity
of thoughts, perspectives and experiences, and honors your identities (including race,
gender, class, sexuality, socioeconomic status, religion, ability, etc.). I (like many
people) am still in the process of learning about diverse perspectives and identities. If
something was said in class (by anyone) that made you feel uncomfortable, please talk
to me about it. If you feel like your performance in the class is being impacted by your
experiences outside of class, please don’t hesitate to come and talk with me. As a
participant in course discussions, you should also strive to honor the diversity of your
classmates.7

If you have a health condition that affects your learning or classroom experience,
please let me know as soon as possible. Students who would like to request
accommodations for disabilities should contact the Accessibility Services office at
Accessibility@dcemail.harvard.edu or 617-998-9640 See this website for more
information: https://www.extension.harvard.edu/resources-policies/accessibility-
services

As a Harvard Extension student you have certain responsibilities. Please
familiarize yourself with the school policies at this website: https://
www.extension.harvard.edu/resources-policies/student-conduct

 This statement is excerpted from one by Dr. Monica Linden at Brown University.7

Spring, 2022 Dr. Henry H. Leitner

https://www.extension.harvard.edu/resources-policies/accessibility-services
https://www.extension.harvard.edu/resources-policies/accessibility-services
https://www.extension.harvard.edu/resources-policies/student-conduct
https://www.extension.harvard.edu/resources-policies/student-conduct

CSCI E-7: Great Ideas in Computer Science Handout #1
VII. Syllabus

The
following calendar and outline should give you an idea of how CSCI E-7 will progress.
Because of the pandemic, the actual dates of these lectures may change if Harvard
decides to delay the start of the spring semester.

Date Topics to be Covered and Optional Reading

Tues., Jan. 25 Course overview and a brief look at some of the “great ideas in
computer science,” including the notion of algorithm and its
relationship to programming.

Thrs., Jan. 27 Introduction to programming in Scratch, a visual, object-oriented
programming language.

Tues., Feb. 1 Scratch programming, conclusion. The ide.cs50.io Linux
environment.

Thrs., Feb. 3 A quick overview of Unix/Linux, HTML5 and the World Wide
Web. A little bit of Javascript.

Tues., Feb. 8 Elementary programming in Python (variables, constants,
assignment, console output). Comparison with Scratch constructs.

Thrs., Feb. 10 Elementary Python, part 2: arithmetic operators, strings,
parameterless methods, nested loops using for. The range function.

Tues., Feb. 15 Elementary Python, part 3: operator precedence. Programming
with “style.” Keyboard input using the input function. Type
conversion functions.

Thrs., Feb. 17 Printing interesting patterns with nested loops. Testing programs
and the flow of control.

Tues., Feb. 22 The Boolean data type and boolean operators and variables;
formulating complex conditions using the logical operators.
Conditional evaluation using if-else. Algorithm for "nested
squares."

Thrs., Feb. 24 Guest lecture on ethical issues in computing.

Tues., Mar. 1 Integer overflow and floating-point imprecision. Other things that

Spring, 2022 Dr. Henry H. Leitner

http://en.wikipedia.org/wiki/World_Wide_Web
http://en.wikipedia.org/wiki/World_Wide_Web

CSCI E-7: Great Ideas in Computer Science Handout #1
can go wrong. Computing Fibonacci numbers. Parameter-passing
mechanism. Returning values from methods. Importing modules.

Thrs., Mar. 3 Simulation and Monte-Carlo methods through the use of pseudo-
random numbers. A somewhat whimsical look at a particular
aspect of computing history. Indefinite repetition using the while
loop.

Tues., Mar. 8 Using a boolean variable. ASCII and UNICODE conventions for
character encoding.

Thrs., Mar. 10 Fun with String objects. Introduction to Python lists.

Saturday, March 12 through Sunday, March 20 is Spring break! No courses meet

Tues., Mar. 22 More on Lists. Simple sorting algorithms. Complexity, and Big-O

notation. Discussion of efficiency using various sorting methods
(bubblesort, selection sort, quicksort) and search (linear vs binary).

Thrs., Mar. 24 Running time of programs, asymptotic notation and growth rates.
Multidimensional lists. A program that “learns” through
experience.

Tues., Mar. 29 Introduction to file I/O and command-line arguments.
Manipulation of CSV files.

Thrs., Mar. 31 Utilizing API keys to download data from the web. Simple
plotting using matplotlib module. Introduction to Dictionaries

Tues., Apr. 5 Turtle graphics and DrawingPanel objects. Other Python
collections: Tuples and Sets

Thrs., Apr. 7 Recursive computation. Towers of Hanoi puzzle as an example of
intractable computation.

Tues., Apr. 12 Introduction to object-oriented programming (OOP). Creating
classes -- writing constructors, accessors, mutators and special
methods. Implementing a rational number class.

Thrs., Apr. 14 OPEN-BOOK EXAM TODAY! Covers Python
programming up through April 7 lecture.

Spring, 2022 Dr. Henry H. Leitner

CSCI E-7: Great Ideas in Computer Science Handout #1 Tues., Apr. 19 Illustrating a theorem in geometry using objects. Inheritance in
OOP.

Thrs., April 21 Computer architecture: The P88 and typical von-Neumann
architecture. CPU, memory, bus, peripherals, storage, etc. The basic
machine cycle (fetch, decode, execute, store) and P88 instruction set
(including binary representation). Viewing programs as data and
data as programs.

Tues., April 26 Term project peer-review presentations for “extra credit.” This is the
last regular class meeting.

Thrs., April 28 No class! Reading period begins today and lasts up
through May 4.

Sat., May 7 Term projects are due today prior to 5 pm.

Spring, 2022 Dr. Henry H. Leitner

