
15 Solutions &
Mixtures

A Lattice Model Describes Mixtures

In Chapter 14, we considered pure liquids or solids composed of a single chem-
ical species. Here we consider solutions, i.e., homogeneous mixtures of more
than one component. The fundamental result that we derive in this chapter,
μ = μ◦+kT lnx, is a relationship between a molecule’s chemical potential μ
and its concentration x in the solution. This relationship will help address
questions in Chapters 16 and 25–31: When does one chemical species dissolve
in another? When is it insoluble? How do solutes lower the freezing point of
a liquid, elevate the boiling temperature, and cause osmotic pressure? What
forces drive molecules to partition differently into different phases? We con-
tinue with the lattice model because it gives simple insights and because it
gives the foundation for treatments of polymers, colloids, and biomolecules.

We use the (T , V ,N) ensemble, rather than (T ,p,N), because it allows us to
work with the simplest possible lattice model that captures the principles of
solution theory. The appropriate extremum principle is based on the Helmholtz
free energy F = U−TS, where S is the entropy of solution and U accounts for
the interaction energies between the lattice particles.

The Entropy of Solution

Suppose there are NA molecules of species A and NB molecules of species B.
Particles of A and B are the same size—each occupies one lattice site—and
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Figure 15.1 A lattice mixture of two
components A and B. The number of
A’s is NA and the number of B’s is NB.
The total number of lattice sites is
N = NA+NB. All sites are filled.

A B

together they completely fill a lattice of N lattice sites (see Figure 15.1):

N = NA+NB. (15.1)

(See Chapter 32 for the Flory–Huggins treatment for particles of different sizes,
such as polymers in simple solvents.)

The multiplicity of states is the number of spatial arrangements of the
molecules:

W = N !
NA!NB !

. (15.2)

The translational entropy of the mixed system can be computed by using
the Boltzmann equation (5.1), S = k lnW , and Stirling’s approximation, Equa-
tion (B.3):

ΔSsolution = k(N lnN−NA lnNA−NB lnNB)

= k(NA lnN+NB lnN−NA lnNA−NB lnNB)

= −Nk
[
NA
N

ln
(
NA
N

)

+NB
N

ln
(
NB
N

)]

= −k (NA lnxA+NB lnxB). (15.3)

This entropy can be expressed in terms of the relative concentrations of A and
B. We will express concentrations as mole fractions x = NA/N and (1−x) =
NB/N . Equation (15.3) gives the entropy of solution of a binary (two-component)
solution as

ΔSsolution

Nk
= −x lnx−(1−x) ln(1−x). (15.4)

x
0 0.5 1

ln 2

ΔSmix/Nk

0

Figure 15.2 The entropy
of solution as a function of
the mole fraction x.

Figure 15.2 shows how the entropy of solution ΔSsolution/Nk depends on x,
the mole fraction of A, according to Equation (15.4).1 The process is illustrated
in Figure 15.3. Put NA molecules of A into a container that has NB molecules
of B. The composition x is now fixed. If the two materials did not mix with
each other, there would be no change in the entropy, relative to the two pure
fluids: ΔSsolution = 0. If the two materials do mix in the random way that we
have assumed, the entropy will increase from 0, for the unmixed state, to
ΔSsolution(x), the value shown for that particular composition x in Figure 15.2.

1ΔSsolution is often called the ‘mixing entropy,’ but the entropy actually arises from the greater
volume available to each particle type [1]: NA particles of A begin in NA sites and end up dis-
tributed in NA+NB sites, for example.
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The components mix because of the multiplicity of ways of intermingling the
A’s with the B’s. This is the driving force that causes atoms and molecules
to mix.

Don’t confuse x with a degree of freedom. The system doesn’t change its
composition toward x = 1/2 to reach the highest entropy. x is the composi-
tion that is fixed by the number of A and B molecules put into the solution. The
solution entropy is maximal at x = 1/2 because this is the solution composi-
tion that gives the highest multiplicity of all possible compositions. Also, note
that this entropy arises from arrangements of particles at fixed overall density
and not from the mixing of holes and particles that we used to describe gas
pressures.

+

NB

NA +  NB

NA

Figure 15.3 Mixing is a
process that begins with NA
molecules of pure A and
NB molecules of pure B, and
combines them into a
solution of NA+NB
molecules.

B A(3)

B B(2)

A A(1)

Figure 15.4 Three types
of contact (or bond) occur
in a lattice mixture of
components A and B.

EXAMPLE 15.1 Mixing entropy (entropy of solution). For a solution contain-
ing a mole fraction of 20% methanol in water, compute the entropy of solution.
Equation (15.4) gives

ΔSsolution

N
= R(−0.2 ln 0.2−0.8 ln 0.8)

=
(
1.987 cal K−1 mol−1

)
(0.5) ≈ 1.0 cal K−1 mol−1

If there were no interaction energy, the free energy of solution at T = 300 K
would be

ΔFsolution

N
= −TΔSsolution

N

= −300 cal mol−1.

Ideal Solutions

A solution is called ideal if its free energy of solution is given by ΔFsolution =
−T ΔSsolution, withΔSsolution taken from Equation (15.4). Mixing an ideal solution
involves no change in energy. And it involves no other entropies due to changes
in volume, or structuring, or ordering in the solution. Chapter 25 describes
solubility and insolubility in more detail. Now we move to a model of mixtures
that is more realistic than the ideal solution model.

The Energy of Solution

In practice, few solutions are truly ideal. Real solutions involve energies of
solution. In the lattice model, the total energy of solution is the sum of the
contact interactions of noncovalent bonds of all the pairs of nearest neigh-
bors in the mixture. For a lattice solution of components A and B, Figure 15.4
shows the three possible types of contact: an AA bond, a BB bond, or an AB
bond. There are no other options, because the lattice is completely filled by
A’s and B’s.
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The total energy of the system is the sum of the individual contact energies
over the three types of contact:

U =mAAwAA+mBBwBB+mABwAB, (15.5)

where mAA is the number of AA bonds, mBB is the number of BB bonds, mAB
is the number of AB bonds, and wAA,wBB,wAB are the corresponding contact
energies. As noted in Chapter 14, the quantities w are negative.

2 Sides1 Contact

Figure 15.5 One contact
between lattice particles
involves two lattice site
sides.

In general, the numbers of contacts,mAA,mBB , andmAB , are not known. To
put Equation (15.5) into a more useful form, you can express the quantitiesm
in terms of NA and NB , the known numbers of A’s and B’s. Each lattice site has
z ‘sides,’ just as in Chapter 14. Figure 15.5 shows that every contact involves
two sides. The total number of sides of type A particles is zNA, which can be
expressed in terms of the numbers of contacts as

zNA = 2mAA+mAB, (15.6)

because the total number of A sides equals

(number of AA bonds)×
(

2 A sides
AA bond

)

+(number of AB bonds)×
(

1 A side
AB bond

)

.

Similarly, for type B particles,

zNB = 2mBB+mAB. (15.7)

Solve Equations (15.6) and (15.7) for the number of AA bondsmAA and for the
number of BB bonds mBB :

mAA = zNA−mAB

2
and mBB = zNB−mAB

2
. (15.8)

Substitute Equations (15.8) into Equation (15.5) to arrive at an expression for
the total interaction energy, in which the only unknown term is now mAB , the
number of AB contacts:

U =
(
zNA−mAB

2

)

wAA +
(
zNB−mAB

2

)

wBB +mABwAB

=
(
zwAA

2

)

NA +
(
zwBB

2

)

NB +
(

wAB−wAA +wBB
2

)

mAB. (15.9)

Now we use the Bragg–Williams, or mean-field, approximation to evaluate
mAB [2–4].

The Mean-Field Approximation

Different arrangements of the system’s particles will have different values of
mAB . In principle, we should consider each configuration of the system, and
we should account for its appropriate Boltzmann weight (for more discussion,
see page 278). This would lead to sophisticated models. Here we explore a
much simpler approach that gives many of the same insights. We make an
assumption, called the mean-field approximation, that for any given numbers
NA andNB , the particles are mixed as randomly and uniformly as possible. This
gives us a way to estimate mAB .
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Consider a specific site next to an A molecule. What is the probability that
a B occupies that neighboring site? In the Bragg–Williams approximation, you
assume that the B’s are randomly distributed throughout all the sites. The
probability pB that any site is occupied by B equals the fraction of all sites that
are occupied by B’s:

pB = NBN = xB = 1−x. (15.10)

Because there are z nearest-neighbor sites for each molecule of A, the average
number of AB contacts made by that particular molecule of A is zNB/N =
z(1−x). The total number of molecules of A is NA, so

mAB ≈ zNANBN
= zNx(1−x). (15.11)

Now compute the total contact energy of the mixture from the known quan-
tities NA and NB by substituting Equation (15.11) into Equation (15.9):

U =
(
zwAA

2

)

NA +
(
zwBB

2

)

NB + z
(

wAB−wAA +wBB
2

)
NANB
N

=
(
zwAA

2

)

NA +
(
zwBB

2

)

NB + kTχAB NANBN
, (15.12)

where we define a dimensionless quantity called the exchange parameter χAB :

χAB = z
kT

(

wAB − wAA +wBB
2

)

(15.13)

(see also page 275).
How does the Bragg–Williams approximation err? If AB interactions are

more favorable than AA and BB interactions, then B’s will prefer to sit next
to A’s more often than the mean-field assumption predicts. Or, if the self-
attractions are stronger than the attractions of A’s for B’s, then A’s will tend
to cluster together, and B’s will cluster together, more than the random mixing
assumption predicts. Nevertheless, the Bragg–Williams mean-field expression
is often a reasonable first approximation.

The Free Energy of Solution

Now combine terms to form the free energy F = U−TS, using Equation (15.3)
for the entropy and Equation (15.12) for the energy:

F(NA,NB)
kT

= NA ln
(
NA
N

)

+NB ln
(
NB
N

)

+
(
zwAA
2kT

)

NA +
(
zwBB
2kT

)

NB + χAB NANBN
. (15.14)

F(NA,NB) is the free energy of a mixed solution of NA A’s and NB B’s, totaling
N = NA+NB particles.

Typically, we are interested in the free energy difference between the mixed
final state and the initial pure states of A and B, ΔFsolution (see Figure 15.3):

ΔFsolution = F(NA,NB)− F(NA,0)− F(0, NB). (15.15)
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F(NA,0) = zwAANA/2 is the free energy of a pure system of NA A’s, which
is found by substituting N = NA and NB = 0 into Equation (15.14). Similarly,
F(0, NB) = zwBBNB/2 is the free energy of a pure system of NB B’s. F(NA,NB),
the free energy of the mixed final state, is given by Equation (15.14). Substitute
these three free energy expressions into Equation (15.15) and divide byN to get
the free energy of solution in terms of the mole fraction x and the interaction
parameter χAB :

ΔFsolution

NkT
= x lnx + (1− x) ln(1− x)+ χABx(1− x). (15.16)

This model was first described by JH Hildebrand in 1929, and is called the
regular solution model [5]. While ideal solutions are driven only by the entropy
of solution of particles of roughly equal size, regular solutions are driven also
by the energy of the mean-field form described above. Solutions having free
energies of solution of the form in Equation (15.16) are called regular solu-
tions. Sometimes energies are more complicated than in this simple model: in
electrolytes, for example; or when molecules are rod-shaped, as in solutions
of liquid crystals; or when A has a very different size than B, as in polymer
solutions. Polymers are described in the last chapters of this book. Here’s an
application of Equation (15.16).

EXAMPLE 15.2 Oil and water don’t mix. Show that oil and water don’t mix
unless one component is very dilute. A typical value is χ ≈ 5 for hydrocar-
bon/water interactions. If xoil = 0.3 and T = 300 K, Equation (15.16) gives the
free energy of solution as

ΔFsolution

N
= [0.3 ln 0.3+0.7 ln 0.7+5(0.3)(0.7)](8.314 J K−1 mol−1)(300 K)

= 1.1 kJ mol−1.

Because this value is positive, it predicts that oil and water won’t mix to form a
random solution of this composition. If the oil is very dilute, xoil = 10−4, then

ΔFsolution

N
=
[
10−4 ln 10−4+0.9999 ln 0.9999+5(10−4)(0.9999)

]

×(8.314 J K−1 mol−1)(300 K) = −1.3 J mol−1,

which is negative, so mixing is favorable.
In general, determining solubility is not as simple as these calculations

imply, because another option is available to the system—it may separate into
phases with different compositions. Phase separation, for which this model is
a starting point, is described in Chapter 25.

The Chemical Potentials

The chemical potential for A in this lattice model of a two-component mixture
is found by taking the derivative μA = (∂F/∂NA)T,NB (see Equation (9.31)) of F
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(Equation (15.14)) with respect to NA, holding NB (not N) constant:

μA
kT

=
[
∂
∂NA

(
F
kT

)]

T ,NB

= ln
(
NA
N

)

+ 1− NA
N
− NB
N
+ zwAA

2kT
+ χAB (NA +NB)NB −NANB(NA +NB)2

= lnxA + zwAA
2kT

+ χAB(1− xA)2. (15.17)

Similarly, the chemical potential for B is

μB
kT

=
[
∂
∂NB

(
F
kT

)]

T ,NA
= lnxB + zwBB

2kT
+ χAB(1− xB)2. (15.18)

The main result is an equation of the form

μ = μ◦ + kT lnγx, (15.19)

where γ (not to be confused with the surface tension) is called the activity
coefficient.

The lattice model leads to a small ambiguity. In principle, our degrees of
freedom are (T , V ,NA,NB). But the volume is not independent of the total par-
ticle number because the lattice is fully filled and constrained by NA+NB = N .
Because the lattice contains no empty sites, this model does not treat pV
effects. We regard the relevant constraints as (T ,NA,NB) and neglect the pV
term. This is why you hold NB constant, rather than N , when taking the deriva-
tive with respect to NA.

Equations (15.17)–(15.19) provide the foundation for our treatment of mix-
ing, solubility, partitioning, solvation, and colligative properties in Chapter 16.
We will find that the chemical potential describes the escaping tendency for
particles to move from one phase or one state to another. Particles are driven
by at least two tendencies. First particles of A tend to leave regions of high
concentration of A and move toward regions of low concentration of A to gain
solution entropy (this is described by the term kT lnx). Second, particles of A
are attracted to regions or phases for which they have high chemical affinity,
described in the next chapter by the quantities μ◦ and χAB .

What’s the physical interpretation of the exchange parameter χAB? From
the steps leading to Equation (15.13), you can determine that χAB describes the
energetic cost of beginning with the pure states of A and B and transferring
one B into a medium of pure A’s and one A into a medium of pure B’s (see
Figure 15.6):

1
2z(AA)+ 1

2z(BB) −→ z(AB), and χAB = − lnKexch, (15.20)

where Kexch is the equilibrium constant for the exchange process. Think of the
A’s as little boys at a dance and the B’s as little girls at a dance. When χAB > 0,
it means the boys and girls don’t want to mix. The larger the value of χAB ,
the more they don’t want to mix. On the other hand, older boys and girls at a
dance do want to mix, so in those cases χAB < 0. When χAB = 0, it means there
is no preference either way, and mixing happens freely. χAB does not include
the translational entropy, so imagine beginning this exchange by choosing a
particular A and B located at fixed spatial positions in their respective media.
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Figure 15.6 The quantity 2χAB is the
energy divided by kT for the process
that begins with pure components A
and B, and exchanges an A for a B.

A

B

If this process is favorable in the direction of the arrow in Equation (15.20)
and Figure 15.6, Kexch > 1. In that case, χAB , which has units of energy divided
by kT , is negative. According to Hildebrand’s principle, for most systems theAB
affinity is weaker than theAA and BB affinities, so usually χAB > 0. The quantity
χAB also contributes to the interfacial free energy between two materials, which
we take up in the next section.

In the next few chapters, we apply this theory of mixtures to liquids. How-
ever, this lattice theory is also widely used for studying properties of solids. For
example, metal alloys are mixtures of metals: brass is copper and zinc; bronze
is tin and copper; solder, used in electronics, is tin and lead; and sterling silver
is mostly silver with a little copper. Metals are driven by the solution entropy
to form these alloys.

Interfacial Tension Describes the Free Energy
of Creating Surface Area

The boundary between two condensed phases is an interface. The interfacial
tension γAB is the free energy cost of increasing the interfacial area between
phases A and B. If γAB is large, the two media will tend to minimize their
interfacial contact. Let’s determine γAB by using the lattice model for molecules
of types A and B that are identical in size.

Suppose there are NA molecules of A, n of which are at the interface, and
there are NB molecules of B, n of which are at the interface in contact with
A (see Figure 15.7). (Because the particles have the same size in this model,
there will be the same number n of each type for a given area of interfacial
contact). The total energy of the system is treated as it was for surface tension

Figure 15.7 Lattice model of
interfacial tension.

Interface
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(see Equation (14.26)), with the addition of n AB contacts at the interface:

U = (NA−n)
(
zwAA

2

)

+n
(
(z−1)wAA

2

)

+nwAB

+(NB−n)
(
zwBB

2

)

+n
(
(z−1)wBB

2

)

. (15.21)

Because the entropy of each bulk phase is zero according to the lattice model,
the interfacial tension is defined by

γAB =
(
∂F
∂A

)

NA,NB,T
=
(
∂U
∂A

)

NA,NB,T
=
(
∂U
∂n

)

NA,NB,T

(
dn
dA

)

, (15.22)

whereA is the total area of the surface in lattice units. You have dn/dA= 1/a,
where a is the area per molecule exposed at the surface. Take the derivative
(∂U/∂n) using Equation (15.21):

(
∂U
∂n

)

NA,NB,T
= wAB−wAA+wBB

2
. (15.23)

You can assemble an expression for γAB from Equations (15.13), (15.22), and
(15.23):

γAB = 1
a

(

wAB−wAA+wBB
2

)

=
(
kT
za

)

χAB. (15.24)

When there are no molecules of B, wAB = wBB = 0, and γAB reduces to the
surface tension given by Equation (14.29), −wAA/2a.

EXAMPLE 15.3 Estimating χAB from interfacial tension experiments. The
interfacial tension between water and benzene at 20◦C is 35 dyn cm−1. Suppose
z = 6 and the interfacial contact area of a benzene with water is about

3 Å×3 Å= 9.0 Å2. Determine χAB at 20◦C. Equation (15.24) gives

χAB = zaγABkT
=
(6)(9 Å2)(35× 10−7 J cm−2)

⎛

⎝ 1 cm
108Å

⎞

⎠

2

(1.38× 10−23 J K−1)(293 K)
= 4.7.

χAB is a dimensionless quantity, and RTχAB = 11.3 kJ mol−1 = 2.7 kcal mol−1

is the exchange energy.

EXAMPLE 15.4 Where does the interfacial tension matter? Interfacial
tension—from either covalent or noncovalent bonding—holds paint on walls
and barnacles on ships. It holds your cells together so your body doesn’t fall
apart, and it helps snails and other slimy critters to crawl. Cell-adhesion pro-
teins help hold cells to surfaces and other cells; they are critical in cancer. Water
on your waxed car shapes itself into spherical beads to minimize its contact
with the wax, because χAB between water and wax is large. Water beads are
flatter on a rusty hood than a waxed hood, since χAB is smaller between water
and rusty metal. Figure 15.8 shows how impurities in metals and other solids
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can migrate to grain boundaries and dislocations, which are interfaces between
different microparticles of solid materials. This can lead to weakening or break-
age of solid materials, sometimes causing catastrophic structural failures of
materials.

Figure 15.8 Impurity atoms (large dark spheres) in
metals and solids (atoms shown as small spheres) can
migrate to boundaries between individual crystals. This
is a major source of the microscopic cracks and fractures
that cause the weakening and breakage of solid
materials.

What Have We Left Out?

There are two main ways in which our lattice model is a simplification. First,
the partition function Q should be a sum over all the possible states of the
system. It should be a sum of the number of states with small numbers of AB
contacts,mAB , and states with largemAB , rather than a mean-field estimate of
the number of uniformly mixed conformations (see Figure 15.9). In this way,
we have made the approximation that

Q =
∑

mAB

W(NA,NB,mAB)e−E(NA,NB,mAB)/kT

≈ N !
NA!NB !

e−U/kT , (15.25)

where E is the energy of a configuration having mAB contacts and W is the
density of states, the number of configurations having the given value of mAB
(see page 177). U is the mean-field average energy from Equation (15.12).

The second approximation that we made was leaving out the quantum
mechanical degrees of freedom: rotations, vibrations, and electronic configu-
rations. Those degrees of freedom normally are the same in the pure phase as
in the mixed phase. In differences of thermodynamic quantities, like ΔFsolution,
such terms cancel, so you are at liberty to leave them out in the first place.
It is only the quantities that change in a process that need to be taken into
account. Only the intermolecular interactions and the translational entropy
change in simple mixing processes. But for chemical reactions in solution,
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quantum mechanics contributes too (see Chapter 16). Taking internal degrees
of freedom into account gives

Q = qNAA qNBB
∑

mAB

W(NA,NB,mAB)e−E(NA,NB,mAB)/kT

≈ qNAA qNBB
N !

NA!NB !
e−U/kT , (15.26)

where qA and qB are the partition functions for the rotations, vibrations, and
electronic states of molecules A and B, respectively. Using F = −kT lnQ (Equa-
tion (10.42)) with Equation (15.26), you get a general expression for the free
energy of solution that includes the quantum mechanical contributions in the
mean-field lattice model:

F
kT

= NA ln
(
NA
N

)

+ NB ln
(
NB
N

)

+
(
zwAA
2kT

)

NA +
(
zwBB
2kT

)

NB

+ χAB NANBN
−NA lnqA −NB lnqB. (15.27)

Uniformly Mixed
mAB Is Large

Unmixed
mAB Is Small

Slightly Mixed
mAB Is Intermediate

Figure 15.9 Particles of A
and B can mix to different
degrees to have different
numbers mAB of AB
contacts. The partition
function Q is a sum over
all these states, but the
mean-field model assumes
uniform mixing.

Similarly, the generalizations of Equation (15.17) for the chemical potential are

μA
kT

= ln

(
xA
qA

)

+ zwAA
2kT

+ χAB(1− xA)2,

and

μB
kT

= ln

(
xB
qB

)

+ zwBB
2kT

+ χAB(1− xB)2. (15.28)

The quantum mechanical components cancel in quantities such as ΔFsolution

when the internal degrees of freedom are unaffected by the mixing process.
To see this, use Equation (15.27) to get the pure state components for Equa-
tion (15.15),

F(NA,0) = NA[(zwAA/2)−lnqA] and F(0, NB) = NB[(zwBB/2)−lnqB],

and subtract. You get the same result as in Equation (15.16):

ΔFsolution

NkT
= x lnx + (1− x) ln(1− x)+ χABx(1− x).

Summary

We have developed a model for the thermodynamic properties of ideal and reg-
ular solutions. Two components A and B will tend to mix because of the favor-
able entropy resulting from the many different ways of interspersing A and B
particles. The degree of mixing also depends on whether the AB attractions are
stronger or weaker than the AA and BB attractions. In the next chapters, we
will apply this model to the properties of solutions.
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Problems

1. Ternary lattice mixtures. Consider a lattice model
liquid mixture of three species of spherical particles: A,
B, and C . As with binary mixtures, assume that all N =
nA+nB+nC sites are filled.

(a) Write an expression for the entropy of solution.
(b) Using the Bragg–Williams approximation, write an

expression for the energy U of solution in terms of
the binary interaction parameters χ.

(c) Write an expression for the chemical potential μA
of A.

2. Enthalpy of solution. For a mixture of benzene and
n-heptane having equal mole fractions x = 1/2 and tem-
perature T = 300 K, the enthalpy of solution isΔHsolution =
220 cal mol−1. Compute χAB .

3. Plot μ(x). Plot the chemical potential versus x for:
(a) χAB = 0,
(b) χAB = 2,
(c) χAB = 4.

4. Limit of x ln x terms in solution entropies and free
energies. What is the value of x lnx as x→ 0? What is
the implication for the entropy of solution?

5. Hydrophobic entropy. The experimentally deter-
mined total entropy of dissolving benzene in water at high
dilution is approximately 14 cal K−1 mol−1 at T = 15◦C.

(a) How does this total entropy compare with the solu-
tion entropy component?

(b) Speculate on the origin of this entropy.

6. Solubility parameters. The quantity χAB describes
AB interactions relative to AA and BB interactions. If
instead of a two-component mixture, you had a mixture
of N different species A,B, . . . , then, to obtain the pair-
wise quantities χij for all of them, you would need ∼N2

experiments involving mixtures of all the components
i = 1,2, . . . , N with all the components j = 1,2, . . . , N.
However, sometimes this can be much simpler. If all the
species are nonpolar, you can make the approximation
wAB ≈ √wAAwBB (see Chapter 24). Show how this reduces
the necessary number of experiments to only ∼N.

7. Self-assembly of functional electrical circuits.
G Whitesides and colleagues have pioneered the forma-
tion of nano- and mesoscale structures based on the self-
assembly of patterned components [6]. Consider a circuit
made from the self-assembly ofN different building block
components. When shaken up together, each component
must find its proper place in a two-dimensional square
lattice for the circuit to function correctly. Using Fig-
ure 15.10, suppose that if the letters are correctly ordered
as on the left, each unit interacts pairwise with its neigh-
bor through an interaction energy wmatch. However, if a
letter is surrounded by an incorrect neighbor, it interacts

more weakly, with an energy wmismatch. Find the contact
energy difference

Δw = wmatch−wmismatch,

necessary to ensure that the circuit can be reliably self-
assembled. That is, the fraction of working circuits should
be higher than δ, where δ is some small value. Ignore
shape and surface effects (assume each of the N com-
ponents makes z = 4 contacts) and only consider the
equilibrium between a perfectly formed circuit and all
possible misformed circuits in which two components
have swapped places. Assume that N is large enough that
the defective components are not in contact with one
another.

A B

Perfect Circuit(a) (b) Misformed Circuit

C D

E F G H

I J K L

M N O P

A B C D

E F H

I

J

K L

M N O P

G

Figure 15.10 Comparing a correctly self-assembled
two-dimensional circuit of parts with an incorrectly assembled
circuit [6]. (a) A perfect Whitesides circuit. (b) One of the
possible misformed Whitesides circuits.
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