Math 221 : Algebra notes Nov. 20

Alison Miller

1 Examples and some basic properties of induced representations

Last time we stated this definition:
Let $\rho: \mathrm{G} \rightarrow \mathrm{GL}(\mathrm{V})$ be a representation of G . Let $\mathrm{W} \subset \mathrm{V}$ be a subspace that is H invariant; let $\theta: H \rightarrow G L(W)$ be the corresponding representation of H. For every $g \in G$, we have a subspace $\rho_{g}(W) \subset \mathrm{V}$; this only depends on the left coset gH . So if σ is any left coset of H in G , we can define $W_{\sigma}=\rho_{g}(W)$ for any $g \in \sigma$.

Definition. We say that ρ is induced by θ if $V=\oplus_{\sigma \in G / H} V_{\sigma}$.
Now we give some examples.
Example. $\rho: \mathrm{G} \rightarrow \mathrm{GL}(\mathrm{V})$ is the regular representation with basis $\left\{\mathrm{e}_{\mathrm{g}}\right\}_{\mathrm{g} \in \mathrm{G}}$, and $\mathrm{W}=$ $\operatorname{span}\left(e_{h}\right)_{h \in H}$ is the regular representation of H . Then $W_{\sigma}=\operatorname{span}\left(e_{g}\right)_{g \in \sigma}$, and $\mathrm{V}=$ $\oplus_{\sigma \in G / H} W_{\sigma}$.
Example. $\rho: \mathrm{G} \rightarrow \mathrm{GL}(\mathrm{V})$ is the permutation representation on left cosets of H , with basis $\left\{e_{\sigma}\right\}_{\sigma \in G / H}$, and $W=\operatorname{span}\left(e_{H}\right), \theta$ is the trivial representation of W. Then $W_{\sigma}=\operatorname{span}\left(e_{\sigma}\right)$ and again $\mathrm{V}=\oplus_{\sigma \in \mathrm{G} / \mathrm{H}} \mathrm{W}_{\sigma}$
Example. $\mathrm{G}=\mathrm{D}_{\mathrm{n}}, \rho: \mathrm{G} \rightarrow \mathrm{GL}(\mathrm{V})$ is the 2-dimensional representation given by embedding G into $\mathrm{GL}_{2}(\mathbb{C})$ as the symmetry group of a regular n-gon, $H=C_{n}$. Here we may take $W=\operatorname{span}\left(\binom{1}{i}\right.$. In this case, there are only two cosets, H and $g H$ for any $g \notin H$. Clearly $W_{H}=W$, and to find $W_{g H}$ we can choose g such that ρ_{g} is reflection through the x-axis, so $W_{g H}=\operatorname{span}\left(\rho_{g}\binom{1}{i}\right)=\operatorname{span}\left(\binom{1}{-i}\right)$. Clearly $V=W_{H} \oplus W_{g H}$.

Observations: if $\rho: \mathrm{G} \rightarrow \mathrm{GL}(\mathrm{V})$ is induced by $\theta: \mathrm{G} \rightarrow \mathrm{GL}(W)$, and W^{\prime} is an H invariant subspace of W, then $\mathrm{V}^{\prime}=\bigoplus_{\sigma \in G / H} W_{\sigma}^{\prime}$ is G-invariant, and the representation V^{\prime} of G is induced by the representation W^{\prime} of H .

If V_{1} is induced by W_{1} and V_{2} is induced by W_{2}, then $V_{1} \oplus V_{2}$ is induced by $W_{1} \oplus W_{2}$.
Using this, we can show that for any representation W of H there is some representation V of G which is induced by W .

First, we do this when W is irreducible. We know that the regular representation $W_{\text {reg }}$ of H contains W as a summand in any irreducible decomposition. Hence we can choose an injection $W \hookrightarrow W_{\text {reg }}$ of H-representations and identify W with its image inside $W_{\text {reg }}$. Now, the regular representation $V_{\text {reg }}$ of G is induced by $W_{\text {reg }}$, so by the first observation above, $\mathrm{V}_{\text {reg }}$ has a subspace V which is induced by W .

Now, let W be an arbitrary representation of H, and take an irreducible decomposition $W=\oplus_{i} W_{i}$. By the previous paragraph, there are representations V_{i} of G induced by W_{i}, and then by the second observation, $\oplus_{i} V_{i}$ is induced by $W=\oplus_{i} W_{i}$.

Although this works to show that V exists, it is not very canonical, in that it required taking a choice of embedding of each W_{i} into $W_{\text {reg }}$. A more canonical construction is given in your problem set.

2 Universal property of the induced representation

However, we'll now show that the induced representation V of G is determined up to canonical isomorphism by the representation of W. To do that, we'll show it has the following universal property:

Theorem 2.1. If $\rho: G \rightarrow G L(V)$ is induced by $\theta: G \rightarrow G L(W)$, then for any other representation $\rho^{\prime}: \mathrm{G} \rightarrow \mathrm{GL}\left(\mathrm{V}^{\prime}\right)$ and any homomorphism $\mathrm{f}: \mathrm{W} \rightarrow \mathrm{V}^{\prime}$ of H -representations, there is a unique homomorphism $\tilde{f}: V \rightarrow V^{\prime}$ of G -representations such that $\left.\tilde{\mathrm{f}}\right|_{W}=\mathrm{f}$.

Proof. We'll do uniqueness first, then existence:
Uniqueness: Since $V=\oplus_{\sigma \in G / H} W_{\sigma}$, to show that \tilde{f} is uniquely determined, it's enough to show that $\left.\tilde{f}\right|_{W_{\sigma}}$ is uniquely determined.

For any $\sigma \in G / H$, choose a coset representative $g \in \sigma$. Now, an arbitrary element of W_{σ} is of the form $\rho_{g}(w)$ for some $w \in W$. Because \tilde{f} is a homomorphism of Grepresentations, we have

$$
\tilde{f}\left(\rho_{g}(w)\right)=\rho_{g}^{\prime}(\tilde{f}(w))=\rho_{g}^{\prime}(f(w))
$$

since $\left.\tilde{f}\right|_{W}=\mathrm{f}$.
Hence the conditions imposed determine the values of $\tilde{f} \mid W_{\sigma}$ for any $\sigma \in G / H$, hence determine \tilde{f}.

Existence: From the above, we get a formula for $\left.\tilde{f}\right|_{W_{\sigma}}$ for each $\sigma \in G / H$, and so also for \tilde{f}. To check that this works we need to check two things: that the formula for $\left.\tilde{f}\right|_{W_{\sigma}}$ does not depend on the choice of $g \in \sigma$, and that $\tilde{f}: V \rightarrow V^{\prime}$ is indeed a homomorphism of G-representations.

Corollary 2.2. If W is a representation of H , and $\mathrm{V}_{1}, \mathrm{~V}_{2}$ are representations of G both induced by W , there is a unique isomomorphism $\mathrm{V}_{1} \cong \mathrm{~V}_{2}$ which restricts to the identity on W .

Proof. This is a standard universal property argument. Let $i_{1}: W \rightarrow V_{1}$ and $i_{2}: W \rightarrow V_{2}$ be the inclusion maps. Then our universal property gives us unique maps $\tilde{\dot{i}}_{1}: V_{2} \rightarrow V_{1}$ and $\tilde{\mathfrak{i}}_{2}: V_{1} \rightarrow V_{2}$ such that $\tilde{\mathfrak{i}}_{1} \circ \mathfrak{i}_{2}=\mathfrak{i}_{1}$ and $\tilde{\mathfrak{i}}_{2} \circ \mathfrak{i}_{1}=\mathfrak{i}_{2}$. Then we argue as in the usual universal property argument that $\tilde{\mathfrak{i}}_{1}$ and $\tilde{\mathfrak{i}}_{2}$ are inverses.

Now a bit of notation.
Definition. If $H \subset G$, and W is a representation of H, we denote the representation induced by W (which we now know is determined up to unique isomorphism by $\operatorname{Ind}_{\mathrm{H}}^{\mathrm{G}}(\mathrm{V})$ or just Ind V if G and H are clear from context.

If $\rho: G \rightarrow G L(V)$ is a representation of V, we use the notation $\operatorname{Res}_{H}^{G} V$ for the restricted homomorphism $\left.\rho\right|_{H}: H \rightarrow G L(V)$.

With this notation, we can restate our universal property as follows:
Proposition 2.3. There is a natural identification

$$
\operatorname{Hom}_{\mathrm{H}}\left(\mathrm{~W}, \operatorname{Res} \mathrm{~V}^{\prime}\right) \cong \operatorname{Hom}_{G}\left(\operatorname{Ind} W, \mathrm{~V}^{\prime}\right)
$$

given by $\mathrm{f} \mapsto \tilde{\mathrm{f}}$ and $\left.\mathrm{g}\right|_{W} \hookleftarrow \mathrm{~g}$.

