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1 Examples and some basic properties of induced repre-
sentations

Last time we stated this definition:
Let ρ : G → GL(V) be a representation of G. Let W ⊂ V be a subspace that is H-

invariant; let θ : H→ GL(W) be the corresponding representation of H. For every g ∈ G,
we have a subspace ρg(W) ⊂ V ; this only depends on the left coset gH. So if σ is any
left coset of H in G, we can define Wσ = ρg(W) for any g ∈ σ.

Definition. We say that ρ is induced by θ if V = ⊕σ∈G/HVσ.

Now we give some examples.

Example. ρ : G → GL(V) is the regular representation with basis {eg}g∈G, and W =

span(eh)h∈H is the regular representation of H. Then Wσ = span(eg)g∈σ, and V =

⊕σ∈G/HWσ.

Example. ρ : G→ GL(V) is the permutation representation on left cosets of H, with basis
{eσ}σ∈G/H, and W = span(eH), θ is the trivial representation of W. Then Wσ = span(eσ)
and again V = ⊕σ∈G/HWσ

Example. G = Dn, ρ : G → GL(V) is the 2-dimensional representation given by embed-
ding G into GL2(C) as the symmetry group of a regular n-gon, H = Cn. Here we may

take W = span(
(
1

i

)
). In this case, there are only two cosets, H and gH for any g /∈ H.

Clearly WH =W, and to find WgH we can choose g such that ρg is reflection through the

x-axis, so WgH = span(ρg(
(
1

i

)
) = span(

(
1

−i

)
). Clearly V =WH ⊕WgH.

Observations: if ρ : G → GL(V) is induced by θ : G → GL(W), and W ′ is an H-
invariant subspace of W, then V ′ =

⊕
σ∈G/HW

′
σ is G-invariant, and the representation

V ′ of G is induced by the representation W ′ of H.
If V1 is induced by W1 and V2 is induced by W2, then V1⊕V2 is induced by W1⊕W2.
Using this, we can show that for any representation W of H there is some represen-

tation V of G which is induced by W.
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First, we do this whenW is irreducible. We know that the regular representationWreg
of H contains W as a summand in any irreducible decomposition. Hence we can choose
an injection W ↪→ Wreg of H-representations and identify W with its image inside Wreg.
Now, the regular representation Vreg of G is induced by Wreg, so by the first observation
above, Vreg has a subspace V which is induced by W.

Now, let W be an arbitrary representation of H, and take an irreducible decomposi-
tion W = ⊕iWi. By the previous paragraph, there are representations Vi of G induced
by Wi, and then by the second observation, ⊕iVi is induced by W = ⊕iWi.

Although this works to show that V exists, it is not very canonical, in that it required
taking a choice of embedding of each Wi into Wreg. A more canonical construction is
given in your problem set.

2 Universal property of the induced representation

However, we’ll now show that the induced representation V of G is determined up to
canonical isomorphism by the representation of W. To do that, we’ll show it has the
following universal property:

Theorem 2.1. If ρ : G → GL(V) is induced by θ : G → GL(W), then for any other represen-
tation ρ ′ : G → GL(V ′) and any homomorphism f : W → V ′ of H-representations, there is a
unique homomorphism f̃ : V → V ′ of G-representations such that f̃|W = f.

Proof. We’ll do uniqueness first, then existence:
Uniqueness: Since V = ⊕σ∈G/HWσ, to show that f̃ is uniquely determined, it’s enough

to show that f̃|Wσ
is uniquely determined.

For any σ ∈ G/H, choose a coset representative g ∈ σ. Now, an arbitrary element
of Wσ is of the form ρg(w) for some w ∈ W. Because f̃ is a homomorphism of G-
representations, we have

f̃(ρg(w)) = ρ
′
g(f̃(w)) = ρ

′
g(f(w))

since f̃|W = f.
Hence the conditions imposed determine the values of f̃|Wσ

for any σ ∈ G/H, hence
determine f̃.

Existence: From the above, we get a formula for f̃|Wσ
for each σ ∈ G/H, and so also

for f̃. To check that this works we need to check two things: that the formula for f̃|Wσ

does not depend on the choice of g ∈ σ, and that f̃ : V → V ′ is indeed a homomorphism
of G-representations.

Corollary 2.2. If W is a representation of H, and V1, V2 are representations of G both induced
by W, there is a unique isomomorphism V1 ∼= V2 which restricts to the identity on W.
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Proof. This is a standard universal property argument. Let i1 :W → V1 and i2 :W → V2
be the inclusion maps. Then our universal property gives us unique maps ĩ1 : V2 → V1
and ĩ2 : V1 → V2 such that ĩ1 ◦ i2 = i1 and ĩ2 ◦ i1 = i2. Then we argue as in the usual
universal property argument that ĩ1 and ĩ2 are inverses.

Now a bit of notation.

Definition. If H ⊂ G, and W is a representation of H, we denote the representation in-
duced by W (which we now know is determined up to unique isomorphism by IndGH(V)
or just IndV if G and H are clear from context.

If ρ : G→ GL(V) is a representation of V , we use the notation ResGH V for the restricted
homomorphism ρ|H : H→ GL(V).

With this notation, we can restate our universal property as follows:

Proposition 2.3. There is a natural identification

HomH(W, ResV ′) ∼= HomG(IndW,V ′)

given by f 7→ f̃ and g|W ←[ g.
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