
Evolutionary Design of Mechanical Linkages

Amanda Ghassaei
Center for Bits and Atoms

Massachusetts Institute of Technology
ghassaei@mit.edu

Joy Ming
School of Engineering and Applied Sciences

Harvard University
jming@college.harvard.edu

ABSTRACT
Mechanical linkages, or systems of rigid bars connected by
hinges or other rotating components, have applications span-
ning the fields of robotics, animation, biology, art, and de-
sign. However, designing linkages with desired motion is a
highly unintuitive process, involving rigorous experimenta-
tion in a high dimensional parameter space. We propose to
use the principles of Darwinian evolution to perform compu-
tational search and optimization of 2D planar linkages. We
do so in two types of contexts: curve-fitting and task-based
fitness. In this paper we describe the creation of a user inter-
face for linkage optimization, our operationalization of the
problem into an evolutionary computation algorithm, and
two experiments assessing the creation of this workflow. We
present our findings as well as possible extensions for this
work.

1. INTRODUCTION

1.1 Motivation
Mechanical linkages are mechanisms that are built exclu-

sively from rigid bars whose motion is constrained by hinges,
cams, and other types of connections. This project is pri-
marily concerned with a subset of mechanical linkages that
are formed by rigid bars connected with revolute joints (also
called “pin joints”, or “hinge joints”) to produce 2D planar
motion constrained to one degree of freedom [7].

Passive linkages form the basis of many types of movement
in engineered and natural mechanisms, as most physical sys-
tems can be reduced to rigid, skeletal bodies constrained by
flexible joints. Mechanical linkages are often used to convert
one type of motion into another, reduce the amount of force
required to perform a motion, or to synchronize the motion
of many subsystems.

Linkages are central to many systems that we interact
with on a regular basis in unexpected ways. The impact of
the combustion engines on locomotion would not have been
possible without the linkage that converts the linear mo-
tion of the piston into rotational motion to drive wheels and
turbines. Mechanical systems of levers and gears formed
early predecessors of computers, and linkages with inter-
changeable cams were used to make the first“programmable”
robots.

The range of continuous motions achievable through me-
chanical linkages is infinite. Kempe’s Universality Theorum
states that any continuous function can be approximated
with arbitrary precision by a planar mechanical linkage [1],
leading to the postulation “there is a linkage that signs your

name” [8].
However, Kempe’s Theorum and subsequent explorations

do not give us generalizable rules about how to design simple
linkages (consisting of relatively few components) that repro-
duce desired motion. The current state of rapid prototyping
technologies has left us in the following predicament: custom
mechanical linkages are relatively easy to fabricate, but dif-
ficult to design. For example, at Disney Research Labs, 3D
printing has simplified the process of creating custom me-
chanical figurines, but complicated software tools and hu-
man effort form a bottleneck in the design/manufacturing
process [3].

If the task of designing linkages was made simpler and
more automated, it would have enormous impact. Passive
mechanical linkages can replace powered actuation systems
in machine design, reducing control complexity, cost, and
power usage. Understanding and designing these systems
is useful in many fields outside traditional machine design,
whether it is to more accurately design animated characters
[12], create prosthetic limbs, or design works of art that turn
wind energy into motion [6].

1.2 Approach
The primary variables to be explored in linkage optimiza-

tion include the topology, the specific connectivity of various
rigid bars and joints in a given linkage, and parameters, the
relative lengths of the rigid bars [12]. In this study, we used
evolutionary computation to evolve linkage parameters to
create linkages that best fit a desired output motion speci-
fied by the user.

As the number of bars and joints in a linkage increases, it
becomes increasingly difficult for a human designer to accu-
rately predict its motion, and therefore gives us little intu-
ition about how to navigate through parameter space to get
closer to a goal. However, curve fitting algorithms and simu-
lated physics environments make the process of checking the
output of a given linkage to a desired path relatively simple.
This property of being hard to design but easy to test and
verify makes linkage design an ideal candidate for evolution-
ary computing, a process that draws ideas from evolutionary
biology to solve complex problems [4].

In evolutionary computing, control of the design process is
relinquished to iterative algorithms, which need a relatively
quick fitness function for verification, but require less guid-
ance concerning design specifics. Basic examples of evolu-
tionary computing include hill climbing, genetic algorithms,
and simulated annealing[5].

In this project, we used evolutionary computing to opti-



mize linkage designs for two different applications: curve-
fitting and obstacle course optimization. These are related
to both the project tracing the motion of animated charac-
ters and creating physical moving structures [12, 6]. Through
the formation of this problem as one regarding evolution-
ary computation, we are able to more efficiently explore
the search space and establish parameters that match better
with our goals in mind.

1.3 Contributions
The main contributions of this paper include the following:

• Construction of a novel software system that allows
users to visualize and interact with the various opti-
mization parameters (Section 3.1).

• Operationalization of the linkage optimization problem
as an evolutionary computation problem with regards
to representation, variation, mutation, and selection
for hill-climbing as well as a genetic algorithm (Sec-
tion 3.2).

• Experimental validation of the linkage optimization on
a curve-fitting problem, including creating a stronger
fitness function, exploration of different target curves,
and modification of parameters such as population size
and mutation rate (Section 4).

• Exploration of the linkage optimization impact on the
creation of a walking system composed of a linkage
varied by similar parameters (Section 5).

2. RELATED WORK
The related work on this topic spans many fields. Most

notably, work at Disney Research Labs has used hill climbing
algorithms as well as user-selected fitness to solve for mecha-
nisms that transform rotational motion into animated move-
ment of plastic toys [3]. The Disney researchers describe an
iterative process, where the movement of each link is first
assumed to be controlled by an actuated joint, then one by
one replaced with a suitable passive linkage substitute [2].

The link lengths of Theo Jansen’s Strandbeest leg design,
which forms the basis of all his kinetic sculptures, was solved
by a genetic algorithm [6]. In his program, he defined the
fitness of a linkage based on the suitability of the output path
as a motion for walking. Some parameters he selected for
were flatness and constant speed when the foot is in contact
with the ground, high stepping height, and maximum time
spent in contact with the ground.

Described in the last section, the mathematical analysis
of planar linkages by Kempe and others has demonstrated
that a critical basis set of mathematical and logical functions
is possible using mechanical linkages alone. This leads to
the Universality Theorem of 2D planar linkages - that any
continuous function can be approximated by enough link-
ages chained together [1]. Though the mechanisms produced
by following Kemepe’s Theorem are incredibly impractical,
consisting of hundreds or thousands of links for relatively
simple motion, they demonstrate that this design space is
rich for computational exploration.

Cabrera et al. describe an algorithm for performing mul-
tiobjective optimization on planar linkages for the design of
a hand mechanism [2].

Figure 1: A sample linkage in all white on the left and a
diagrammatic break-down showing the major components:
links (blue), hinges (yellow), and drive crank (red).

Though the Golem project explores a different design space
of linear actuators connected in various configurations, it ties
together evolutionary design and rapid prototyping in a way
that we hope to explore through our own work [9].

3. METHODS

3.1 Software
The main contribution from this research is the devel-

opment of a linkage optimization application, LinkHinge,
which allows a user to perform many types of search over
parameter space to find a linkage geometry that most closely
reproduces a desired output. This software is written in
Javascript, using the libraries/frameworks Backbone.js (UI
events), Three.js (WebGL), and Matter.js (2D physics en-
gine).

The latest code can be found on Github, and a live demo
of the application is on GitHub Pages.

3.2 Evolutionary Computation Setup
The goal of this project is to reproduce a desired, arbitrary

motion path using a 2D planar linkage. We used evolution-
ary computing algorithms to alter an initial linkage design,
specifically its parameters, and select for combinations that
best fit a given path. The output from our application is a
linkage description, including the location and size of each of
its components and a description of how to manufacture the
design. Some considerations for creating this evolutionary
computation algorithm are as follows:

3.2.1 Representation
Though linkages are usually described in terms of rigid

bodies constrained by hinges, they can be alternatively thought
of as a system of hinges with distance constraints between
them. Then, the topology of the linkage describes which
hinges are associated with each distance constraint, and the
parameters of the linkage are the lengths of the distance con-
straints. This is the representation used internally within
our application. A visual depiction of this representation is
shown in Figure 1.

Each linkage owns an array of “hinges” and an array of
“links”. Some hinges are free to move, and others are fixed.
Each link specifies a distance constraint between the two
hinges. Links update their position and rotation on the
screen based on the position of their associated hinges each

https://github.com/amandaghassaei/LinkageOptimization
http://amandaghassaei.github.io/LinkageOptimization/


time the physics simulator increments in time.
Each linkage also owns a “drive crank” which causes a

hinge to move around another fixed hinge at a constant an-
gular velocity. This rotational motion drives the movement
of the rest of the linkage, and since the system is constrained
to only one degree of freedom, causes it to trace its output
path over and over.

3.2.2 Variation
Variation occurs in two main methods: mutation and

crossover. We started with a hill-climbing only algorithm
with mutations. Mutation in evolutionary computing is in-
spired by point mutations in DNA; in our system it causes
variation of a single parameter of a linkage (the length of a
rigid bar).

Then we introduced crossover. Crossover requires pop-
ulations of more than one, so we switched over to a more
traditional GA for this part of the analysis. Crossover oc-
curs between the “links” arrays (described in the previous
section) of two parent linkages, causing the children to re-
ceive some distance constraints from one parent and some
from another.

The crossover used in our system is called “single point
crossover”, referring to the fact that the links array of each
parent is split at a single point and then crossed to form a
child array. Single point crossover helps to preserve related
sections of a linkage through the evolutionary process. This
makes mating less destructive to the optimization process
when a design is near a local optimum.

3.2.3 Selection
The fitness functions used to select for fitter individuals is

related to the goals for each of the two experiments. Since
the goal of Experiment 1 (Section 4) is to trace the target
curve using different parameters in the test curve, the fitness
function used is based on a curve-fitting algorithm that is
robust to changes in phase, rotation, translation, and scale.
The fitness function used is elaborated in Section 4.2.

The goal of Experiment 2 (Section 5) is to create a walk-
ing system that travels the farthest distance in the shortest
amount of time. The fitness function used is based on the
distance travelled over a given amount of time. This is fur-
ther elaborated in Section 5.2.

In the case of both experiments, the selection and mat-
ing process is inspired by Daniel Shiffman’s The Evolution
of Code in its setup [10]. Each time a new generation of
linkages needs to be calculated, the previous generation are
thrown into a mating pool where they are given a prob-
ability of mating based on their fitness. Two parents are
drawn from the mating pool according to these probabilities
to create one child linkage. This process is called “fitness
proportionate selection”.

3.3 Experimental Validation
As alluded to in the previous section, we use two distinct

experimental setups with different goals to test our evolu-
tionary linkage optimization setup. The first experiment
(Section 4 looks at curve fitting, or how well our system
can evolve linkages that match up with a given input curve.
The second experiment (Section 5) looks at how well a me-
chanical system constructed using many copies of the same
linkage performs on a walking task, specifically how far this
system can travel over a given amount of time.

For each of the experiments, we tested different parame-
ters of optimization on two different types of evolutionary
computation algorithms, hill-climbing and a genetic algo-
rithm. On a high-level, hill-climbing is based on random
mutations of a single individual linkage system to include
only improvements based on the fitness function and the ge-
netic algorithm is based on a population of linkage systems
that include both mutations and crossover as a means of
variation.

Our software application allows for the variation of many
parameters, including population size, mutation rate, and
maximum length of change. Detailed analysis of these pa-
rameters is given in Section 4.3.

In the following sections we present the results of each of
these studies using the software constructed and the oper-
ationalization of the problem to fit evolutionary computing
described above.

4. EXPERIMENT #1: CURVE FITTING

4.1 Study Setup
The first experiment looks at the evolution of linkages to

fit a given input curve. The input to the algorithm is a set of
points sampled at fixed time steps that describe the motion
of interest. At each generation, a fitness function checks the
closeness of the generated curve to the input curve in a way
that is robust to translation, rotation, scale, and phase of
the two different curves through a process of normalization.

We investigate the results of this study based on hill-
climbing and the genetic algorithm with the parameters de-
scribed above.

4.2 Fitness Function
The fitness function of the linkage system in Experiment

1 is based mainly on curve fitting, or how well the shape of
the motion of the linkage system matches with the desired
input motion. This curve fitting measures the difference
between the output path of a linkage against the variants
of the input curve. We create a fitness calculation that is
robust to the following parameters by normalizing the curve
in the following manner:

• Translation. In order to correct for a curve that is
potentially off center, we calculate the midpoint of the
two points that are furthest apart on the curve and
shift the curve so that the midpoint is on the origin.

• Rotation. Correcting for rotation, we calculate the
angle between the midpoint and the line drawn be-
tween the two farthest points on the curve and rotate
the curve so that the angle between the two farthest
points is 0 and the line is effectively horizontal.

• Scale. The “radius” or distance between the calcu-
lated midpoint of the curve and the farthest points is
adjusted to be equal to one, shifting all of the other
points by the inverse of that distance.

These steps to normalization can be seen in Figure 2. Af-
ter the curves are normalized, the curves then have to be
matched for phase before calculating the fitness. The pro-
cess by which the curves are matched for phase is loosely-
inspired by the RANSAC algorithm and rotates setting each
point as the phase anchor. For each of the phase anchors,



Figure 2: The first three steps to normalization: (1) transla-
tion, (2) rotation, and (3) scaling, where blue is the original
curve and red is the normalized curve.

Figure 3: Pseudocode for calculating fitness between an out-
put curve and a target curve in a manner that is sensitive
to phase shift.

the fitnesses are calculated, or the distances between each of
the points. This process is described in the pseudocode in
Figure 3.

4.3 Results
We first start with an assortment of target curves that

vary based on complexity, concavity, and size and both hill-
climbing and genetic algorithms are run for the optimization
of these curves. Then, for genetic algorithms, selecting one
of the target curves and using a population of 20 linkages,
we alter the mutation rates. Then, taking the best mutation
rate based on the above analysis, we alter the population
sizes of individual linkages. For hill-climbing we look at a
variety of the maximum length of change. The results of
these experiments are explored below.

Each one of the figures in the following section graphs the
maximum fitness of linkages in a given population at each
time step. By graphing the maximum fitness (as opposed to
say the average fitness or minimum fitness) we are able to
examine the best cases for each one of the iterations, seeing
the limits of what the algorithm can output at a given time
step. Furthermore, in the end, it is the maximum fitness
that indicates whether the goal has been met or not.

4.3.1 Target Curves
The sample target curves can be seen in Figure 4. These

target curves are known to be achievable by the given topol-
ogy because they are generated using the given linkage topol-
ogy with modified parameters to achieve various extreme
cases. The parameters are adjustments to the original loca-
tion of each of the hinges and therefore the lengths of the
links as randomly selected numbers within a small interval
near the actual values for the base configuration. These
sample target curves are selected specifically due to their

Figure 4: Images of the sample target curves created by
the linkages indicated by the bright blue line over the initial
output curve outline in black.

differences in size, complexity, and concavity. For exam-
ple, sample curve A is actually much smaller in size before
normalization and sample curve D is the most complex in-
cluding four loops, or the most concavity as well.

Each of these target curves was tested using both hill-
climbing and genetic algorithms for 5,000 runs each, using a
mutation rate of 1%. In the case of genetic algorithms, we
use a population size of 20 and in the case of hill-climbing,
we use a maximum length of change of 15%. The results of
these runs are show in Figure 5.

These results show a very interesting trend. Within each
of the individual output curves, there is some interesting
movement. It seems like for the A input curve, or the“round-
est” target curve, since the initial output curve is generally
fairly flat and shaped more like input curve B, there is a
steady growth from a very low fitness (since all of the points
in the flat output curve are pretty far away from the points
on the round target curve).

There seems to be a fairly large gap between the two types
of curves, A and B which are fairly simple compared to C
and D which are much more complicated. As expected, A
and B perform fairly well for both optimization strategies,
within the 80 and 100 fitness range and C and D sit in
the 40 to 60 fitness range. This is interesting because it
demonstrates that the fitness function is better optimized
for handling smooth, convex curves. This makes sense be-
cause those seem to be easier cases to handle and match.
However, this is an interesting roadblock and can be ex-
plored by altering the parameters of the fitness function to
better account for target curves that include more complex-
ity and concavity, specifically looking at the number of times
the curve crosses itself or using more drastic changes in the
mutation steps.

Comparing between the genetic algorithm and the hill
climbing algorithm, we see that while there are some dras-
tic fitness changes in hill climbing, it is the genetic algo-
rithm that presents the stronger levels of improvement. This
makes sense because the genetic algorithm approach allows
for a much wider range of mutation, encouraging crossover
in addition to the smaller point mutations. This then makes
sense that there are bigger jumps in genetic algorithm and it
is reaffirming to know that most of these jumps will actually
be improvements.

4.3.2 Mutation Rates
The next parameter that was changed for the genetic al-

gorithm approach was the mutation rates. In this case, we
test two different curves, the most simple target curve A and
the most complicated target curve D on varying mutation
rates, initially of 1%, 5%, and 10%. The results of these
runs can be seen in Figure 6.



(a) Hill climbing (b) Genetic algorithm

Figure 5: Hill-climbing and genetic algorithm approaches on various sample curves (A, B, C, and D).

(a) Target Curve A (b) Target Curve D

Figure 6: Performances of various mutation rates (1%, 5%, and 10%) on input curves A and D.



Surprisingly, it does not seem that mutation rate effects
the performance of the algorithm on curve fitting. Looking
at the results with respect to input curve D, or the most
complex curve, as seen in Figure 6b, the different mutation
rates seem indiscernible. Not only do they continue to span
the same range of fitnesses, between 40 and 60, there does
not seem to be a strong trend of any mutation rate doing
much better than the others. The two mutation rates that
slightly stronger showings with the most time steps that are
on the higher levels, or the orange 5% and green 1% curves,
both seem to reach these higher states at a relatively similar
rate. The main difference is that the green or 1% curve
seems to dip a bit lower than the orange 5% curve at some
points.

For input curve A, or a simpler curve that the algorithm
has traditionally performed at a higher capacity on, the per-
formances past the location of the plateau seem to be some-
what similar. The main differences can be identified in the 0
to 200 runs time step. In this case, it seems like the mutation
rate changes the rate a which the plateau is reached. This
is seen in the fact that the 1% and 5%, which are propor-
tionally the closest mutation changes, can be seen to plateau
together, their curves intertwined in the 0 to 200 time step.
However, as the mutation rate doubles to 10%, the plateau
is reached much faster. Doubling once again brings the 20%
showing to be twice as fast. What is absolutely intriguing is
the fact that the 20% and the 50% mutation rates perform
at a similar capacity. An explanation for this could be that
there is some limit in practice at which the plateau can be
reached, which the 20% and 50% mutation rates accelerate
towards. Another explanation could be that at relatively
high rates, different rates contribute very little in terms of
differences in speed.

Therefore, the 5% mutation rate is reasonable for more
difficult curves and a higher mutation rate on simpler curves,
perhaps a suggested 20% allows the plateau to be reached
at a much faster pace.

4.3.3 Population Sizes
Another parameter that can be adjusted for the genetic

algorithm approach is the number of individuals in a given
population. The previous runs have all used populations of
20 individuals. In these tests, we hold the mutation rate
constant at 1% and look at the effect of populations with
sizes of 5, 10, 20, 50, and 1000 individuals. The results of
these runs can be seen in Figure 7.

These results are very interesting and demonstrate the
fact that population size has a large effect on the rate a which
the target curves plateau. On target curve A in Figure 7a,
the difference is quite obvious. The curves are generally
staggered in a way that is positively correlated with popu-
lation size: the lower population sizes reach their plateaus
a lot faster than the higher population sizes. However, one
interesting case is the population size 20 versus the popula-
tion size 50. The population size 20 actually does the second
best despite not being the second highest population, cross-
ing the population 50 line and reaching the plateau earlier.
And based on the current number of runs, it seems like the
different population sizes reach different plateaus.

For the target curve D, seen in Figure 7b, the differences
are quite stark but less correlated. For example, the popula-
tion that seems to do the best and actually breaks out of the
otherwise generally restricted fitness of 40-60 is the popula-

tion size of 50, the second largest population size tested. The
largest population size, 100, reaches its plateau the fastest
but the plateau is lower than that of the population 50 and
is later met by the population 20 and population 5. The
population 10 seems to do the worst, actually dipping a few
times lower than the original fitness and then ultimately not
fluctuating much.

Between the two different curves there does not seem to
be a very strong common trend. While it is interesting that
there is such a diverse range of results from the varying pop-
ulation sizes, the lack of a coherent trend, except perhaps
the slight trend seen between population size and speed of
reaching a plateau for input curve A, means that these re-
sults are not quite conclusive. The lack of correlation in
input curve D could be due to the difficulty of reaching a
good solution in general because of the fitness function. Fu-
ture approaches could test a variety of population sizes in
parallel or even randomly generate different population sizes
to find a better fit.

The reason why the number of trials is truncated at 500
is because running the population of 100 overnight only re-
sulted in 1048 runs being successfully completed before de-
bilitating my computer and causing it to shut down and
delete all of the data. This may change the interpretation
of the data as the differences between each of the individ-
ual curves is magnified within this relatively short timescale
compared to other timescales. This could be traced back to
the fact that a lot of the algorithms used are not scalable
efficiently. For example, the phase calculations are done on
all of the points whereas a smarter sampling of less points
in terms of which are used as phase anchors and which dis-
tances from the original curve are calculate could probably
give a better sense of the fitness.

One consideration for future implementation is the effi-
ciency trade-off. Running with such a large population size
is computationally intensive, and based on the results and
the analysis above, might not be worth it for the most part.
A more efficient algorithm could change the trade-off seen
and shift the type of approach that is used in the future.

4.3.4 Maximum Length of Change
Looking at the parameters that affect the hill-climbing

approach, most are centered around the maximum length of
change. In these tests, we look at the maximum length of
change of 5%, 15%, 25%, and 50%. The results of these runs
can be seen in Figure 8.

These are interesting because they demonstrate that the
maximum length of change does have some effect on the
types of results that emerge from the algorithm. In the case
of target curve A, seen in Figure 8a, the various maximum
length of changes create a nice spread in the rate at which
the plateau is reached. The maximum length of change of
5 seems to perform the best in reaching the plateau at the
fastest speed, 25 at the second and 15 and 50 winding to-
gether to reach their plateaus at similar speeds. This is
interesting because, once again, there does not seem to be
a linear correlation between the different maximum lengths
and the resulting fitnesses, but it is interesting that the low-
est maximum length was able to plateau the fastest. This
is potentially due to the nature of the target curve and the
fact that the original output curve is already relatively close
to the target curve to begin with.

For target curve B, seen in Figure 8b, there is also a wide



(a) Target Curve A (b) Target Curve D

Figure 7: Various population sizes (5, 10, 20, 50, 100) on input curves A and D.

(a) Target Curve A (b) Target Curve D

Figure 8: Various maximum length of change (5%, 15%, 25%, 50%) on input curves A and D.



array of results not necessarily in terms of the rate of the
curve in reaching the plateau but in the quality of the results
in general. It seems that the maximum length of change of
50 does very well, though the maximum length of 5 catches
up later in the time periods. The other ones, populations
15 and 25 do not perform as well as the other maximum
lengths. This is interesting because this shows that the“mid-
dle” curves may not perform as well as the two “end” curves.

Across the two target curves, it seems that the only trend
is that the maximum length of change of 5 seems to per-
form the best (or in the case of the second, well enough)
when compared to the other input curves). One possible
generalization is that a lower maximum length of change
for simpler curves is better and a larger maximum length
of change for more complicated and crazy curves is mer-
ited. This makes sense because the crazier curves require
more reaches in terms of maximum length because it may
require crazier changes in the lengths to generate such differ-
ent curves. Further examination is necessary, especially with
regards to the craziness of the curves and the percentage of
maximum changes that are allow (potentially even seeing if
100% maximum length of change would create some differ-
ences).

There are some weaknesses to this analysis because hill
climbing in and of itself is fairly random, meaning that
multiple trials with these different parameters of maximum
length of change may alter the output depending on many
different factors. Therefore, future work could then look at
different iterations with the same parameters to see if there
is sufficient variation between the different trials with the
same parameters.

Also there, is the weakness of differences in the types of
curves. While the fitnesses in target curve A did converge
somewhat, this was almost expected, given the performance
of target curve A in the other trials. However, it is hard to
tell if the fact that target D did not converge is due to the
fact that there is a trend in the differences between the max-
imum length of change or due to the fact that the solution
is simply more difficult to achieve. It would be interesting
to see how the various trials proceed at a much larger time
scale, but due to time and computational constraints, it was
not possible to do so this round.

4.4 Discussion
Altering the different input curves, mutation rate, popula-

tion size, and maximum length of change created an interest-
ing array of results across the different experiments. Some
of the interesting insights across all of these different param-
eters include the large differences that can be induced with
just a small shift in parameters. For example, the sample
curves very neatly divided into two different types, smooth
and loopy curves. While the mutation rate did not have
discernible changes across the different parameters on the
long term, all of the mutation rates, population sizes, and
maximum length of change had some differences in the 500
runs range.

Future iterations of testing would need to focus on a differ-
ent assortment of target curves of intermediate complexity,
more iterations with a given set of parameters until a more
acceptable plateau has been reached, and more repeated it-
erations with a given set of parameters to understand the
effect of the element of randomness on the average of the
multiple trials.

Figure 10: Diagram of a sample walking machine made from
an assembly of six leg linkages. One leg is highlighted in
bright purple, the other five legs are shown in translucent
purple. The legs are connected to a rigid triangular body
structure and driven by a central crank at the center of the
machine.

Some concerns include the fact that though the graphs
were graphing the maximum fitness of the best linkage for
each of the experiments, none of the iterations were able to
achieve an ultimate “perfect” score of 100 fitness. This is
scaled to the difficulty of the curve, seen through the differ-
ences between target curves A and B and target curves C
and D, but this could also be due to the need to improve
the fitness function.

5. EXPERIMENT #2: OBSTACLE COURSE

5.1 Study Setup
In the second experiment, we patterned several copies of

one linkage to form the legs of a mechanical walking machine
(Figure 10). A pair of legs is constructed by reflecting one
linkage of phase θ across the y-axis to create a complimen-
tary leg of phase π−θ. Then n pairs of legs are added to the
central drive crank, each pair out of phase by 2π/n radians.

In the experimental setup, a user can define the number
of leg pairs used in the construction of the walker; our data
is based on walkers made from 3 leg pairs. Fitness was
assessed based on the ability of the machine to walk through
a simulated physics environment.

This portion of the analysis required an additional dimen-
sion in the design space - the rotation of the leg relative to
the body. This variable effects both the static stability of
the walker and the portion of its output path that comes in
contact with the ground. Small changes in leg attachment
angle result in dramatic changes in fitness.

5.2 Fitness Function
Instead of optimizing for a user defined path, this experi-

ment optimizes for a task; this has the effect of simplifying
the fitness function greatly from the experiment 1. The rel-
ative fitness of two walking machines can be assessed easily
by racing them across the obstacle course. This portion of
the project is more inline with related work by Sims[11] and
Jansen[6].

5.3 Results



Figure 9: Results from the genetic algorithm run (left) show that the population was able to collectively avoid a local optimum
and reach a more globally optimized solution. Results from three walking hill climbing trials (right) show two converged to
approximately the same solution and one became stuck at a local optimum.

The results are shown in Figure 9. The units of fitness
for this portion of the analysis are speed (distance in pixels
traversed per time of walker cycle). The fitness values re-
turned by the hill climbing trials may be directly compared
to those returned by the genetic algorithm

5.3.1 Hill-climbing
During this analysis, we ran three trials of hill climbing,

allowing the system to run for 12000 generations. Two hill
climbing trials (trials 1 and 3) converged on nearly identi-
cal linkage designs, ending with a fitness of approximately
40. The second trial converged on a local optimum whose
method of locomotion looks starkly different from the other
two trials.

The appearance of this local optimum in parameter space
is highly correlated to leg attachment angle. If the legs of a
walker are attached with a negative angle (causing the body
to form a downward facing triangle as in Figure 10), then
the system will converge on the solution found by trial 2.
Conversely, if the leg attachment angle is positive (forming
an upward pointing triangle for the body, as in Figure 11),
the system is allowed to converge to the more globally opti-
mized solution found in trials 1 and 3.

5.3.2 Genetic algorithm
The genetic algorithm run was conducted with a popula-

tion of 40 linkages and mutation rate of 1%; the trial was al-
lowed to run for 740 generations. Figure 9 shows the spread
of fitness across the entire generation in light green and the
average fitness in dark green.

Throughout the entire trial, the genetic diversity of the
population maintains a healthy spread, free of major bot-
tlenecks. The appearance of bottlenecks in genetic diversity
indicate that the population size might be too small, the
selection process is giving too much of an advantage to the
more fit individuals in the population, or that the methods
of variation aren’t introducing enough new diversity over
time.

5.4 Discussion

In general hill climbing runs much more quickly than ge-
netic algorithms because it requires significantly less pro-
cessing per generation. This explains why we were able to
run three long trials of hill climbing in the same time it took
to run one genetic algorithm trial. Hill climbing also tends
to converge on a solution much more quickly because it has
enormous pressure pushing it uphill in its local parameter
space. This is clearly shown in the first few hundred genera-
tions of all three hill climbing trials compared to the genetic
algorithm trial.

One downfall of hill climbing is its inability to escape from
local optima once it starts approaching. By contrast, genetic
algorithms have less selective pressure driving them towards
higher fitness, so they are able to jump away from local
optima and reach global solutions. This leads us to the most
interesting result from the walking trials:

If allowed to continue indefinitely, it is highly likely that
trial 2 of the hill climbing runs would never escape the local
optimum it has converged on by generation 12000. By con-
trast the genetic algorithm lands on the same local optimum
for generations 0-650. The maximum fitness of the genetic
trial hovers around 25-28, comparable to the 32-33 fitness
obtained in hill climbing trial 2. Suddenly, around genera-
tions 650-750, the genetic algorithm trial is able to escape
this local optimum and move toward the better solution also
discovered by trials 1 and 3 of hill climbing. The new maxi-
mum fitness lands at 35-36, comparable to the 38-40 fitness
achieved in the hill climbing trials.

6. FABRICATION
In any simulation tool that models something about the

real world, it’s important to validate against experimental
results. To increase computational efficiency, we’ve made
some assumptions and approximations, most notably, that
these mechanical systems can be projected and sufficiently
modeled in a two-dimensional space.

Furthermore, the design optimization described in this
proposal is primarily concerned with the degree of freedom



Figure 11: A sample leg fabricated from plywood and alu-
minum pipe. All wood parts were cut on a CNC router from
vector files generated by the javascript app.

constraints of a linkage that result in a given motion. In
the real world, other factors such as distribution of mass,
torque, 3D structure, and inertia play a role in the viability
of a particular linkage design. Some of these factors were
accounted for without explicitly simulating them through a
physics engine. For example, by imposing a minimum length
on all the rigid bodies in a linkage, you ensure that no link
in the system requires an exceedingly large force to generate
sufficient torque for movement.

To truly test the mechanics of the designs, we used rapid
prototyping techniques to realize a select few designs in a
non-virtual space. The linkage designs were exported as
2D vector graphics in SVG format from the Javascript ap-
plication. Then the parts were cut from 1/2” plywood and
epoxied to short lengths of aluminum pipe to create working
revolution joints. A sample leg is show in Figure 11.

Though development is currently underway, the construc-
tion of an entire walking machine was not finished at the
time this paper’s submission. Supplemental video from the
authors will be provided at a later date.

7. CONCLUSION
Our project presents an approach to linkage optimization

via evolutionary computing. We utilize the property that
the search space of the problem is very large but that the
ability to verify the correctness of a solution is fairly sim-
ple to establish the representation, variation, and selection
involved in the presentation of linkage optimization as an
evolutionary computing problem. We assess this workflow
using a novel, web-based user interface to evaluate with two
different goals: curve-fitting and obstacle course movement.
Both problems provide a range of input-driven and free-form
problem solving.

Through the curve-fitting evaluations, we find the robust-
ness of the method to various target curves, mutation rates,
and population sizes. In the obstacle course evaluation we
find that genetic search is able to escape local optima in this
design context, but at the cost of processing time.

7.1 Future Work

Figure 12: Possible rules for topology mutation.

Ultimately, the goal for this work is to create a design opti-
mization workflow for mechanical linkages. This tool would
allow a user to collaborate with computational optimization
strategies to generate mechanisms that meet a set of de-
sign goals. With only a small basis set of constraint types
(explained in detail in Section 7.1.3), it is possible to cre-
ate mechanisms for a wide variety of mechanical engineering
contexts.

7.1.1 Linkage Topology
In this paper we’ve described search across the parameter

space of a given linkage topology to find mechanisms that
optimize for curve fitting and task-related fitness. However,
one linkage topology generates only a small family of output
curves and does not span the range of all possible desired
paths. Therefore, to find linkages which are optimized for
any arbitrary target path or task, it is necessary to search
across linkage topology as well.

Search across linkage topology makes the processes of evo-
lutionary design more complicated. For example, if two link-
ages have different topology, it is possible that combining
them in crossover will be an excessively destructive process.
A programmer might decide to separate linkages according
to their topology for mating and crossover, analogous to spe-
ciation in a biological context.

The mutation of linkage topology requires a set of rules
that governs the possible topology changes. One constraint
that should be held throughout this process is that the mu-
tation should not alter the combined degrees of freedom of
a linkage (combined degrees of freedom always equals 1).
Some example mutation rules could be:

• A single link mutates into a rigid three-bar linkage

• A three bar linkage mutates into a four-bar linkage
(check that the total combined degrees of freedom of
the linkage do not increase)

• A three bar linkage mutates into a four-bar linkage
(check that the total combined degrees of freedom of
the linkage do not decrease)

These mutation processes are illustrated in Figure 12.

7.1.2 Optimization Strategies
Due to time constraints, we did not get a chance to im-

plement several other optimization strategies of interest into
our workflow.

Simulated annealing is a process that allows for larger
or more numerous mutations to occur when a solution is



farther from its goal, in order to avoid becoming trapped
in local maxima. It is especially useful during hill climbing
optimizations, where the system is constrained to only move
up in fitness.

Nelder-Mead and Conjugate Gradient are other strate-
gies from combinatorial optimization that allow for efficient
search over high dimensional parameter space.

7.1.3 Design Workflow
Eventually, we envision that this design workflow will grow

to encompass a wider variety of hinge constraints. So far the
tool allows for three types of hinges:

• Fully fixed (0 degrees of freedom)

• Constrained only by the links it’s connected to (1 de-
grees of freedom)

• Driven, currently only driven in a purely rotational
motion is possible (1 degree of freedom)

We would like to add the following hinge types:

• Driven on any arbitrary path

• Passively constrained to any arbitrary path (a track
follower)

With these five type of hinge constraints, the design tool
will be able to model a wide variety of mechanical systems
that may interact with the linkage in some way. For ex-
ample, a driven constraint models the effect of connecting
a motor to the linkage; a hinge driven on a line might rep-
resent a leadscrew or hydrolic actuator, an arc might be a
servo motor, and a circle might be a rotary motor or a tur-
bine, an arbitrary looping path could be a cam or irregular
geared system. Passive constraints models track followers
that constrain movement of parts of a linkage to a 1 degree
of freedom path.

The fitness constraints in the design workflow should also
grow to encompass more design objectives. Currently, op-
timizing for a target path allows a user to control position
and velocity of one part of the linkage for its entire motion
cycle. Other parameters to be used in the fitness function
include:

• A small set of control points of interest that the linkage
should pass through (keyframing)

• Orientation of linkage extremities/end effectors as it
passes through control points or along entire path

• Velocity along sections of the path

• Max torque required to drive the linkage through its
full cycle

• Max forces experienced by all parts of the linkage through
its motion cycle

• Space required by the linkage

7.1.4 Experiment #1: Curve Fitting
The results of the curve fitting experiment show the promise

of this approach to tackling curve fitting problems in the
future. However, in this current implementation, the algo-
rithm is only adept at fitting simpler, convex curves. Of
course, the given evaluation is relatively robust but is time
constrained. The current target curves that are used for as-
sessment include only very smooth curves (target curves A
and B) and fairly squiggly curves (target curves C and D).
With more time, a more diverse array of curves would be
helpful in seeing exactly the range of motion of the linkages
and the flexibility of the algorithm. For example, having
curves that are otherwise smooth but have only one bump
or one cross as opposed to many squiggles or curves can help
determine the range of motion.

The goal of simpler, convex curves is generally sufficient
for most curve fitting applications, such as the character
movement development curve seen in the Tomaszeweski et.
al. 2014 paper [12]. However, since mechanical linkages are
so powerful in the range of motion they can achieve, it would
be important to test this out in a more extensive fashion
and adjust the current workflow to match a wider array of
curves. It would be important in future iterations to try
to develop a fitness function that would be more robust to
increasingly complex curves. This could take into account
simple aspects of the complicate curves such as the number
of times the curve crosses itself.

It would be interesting to try to understand how changing
a given parameter of the linkage is reflected in the curve that
is outputted. For example, understanding that adjusting the
length of a specific linkage could result in a larger motion in
that direction or a given ratio of two linkage lengths would
result in a wider range of motion. This would be very differ-
ent for different linkages and would require much more op-
timization and understanding of each of the given linkages,
which would change the balance between overfitting and cre-
ating a procedure that is robust in all different situations. A
more generalized solution could be more generalized rules of
ratios between the link lengths as opposed to absolute indi-
vidual link lengths. Or even a fitness function that does not
only look at how close each of the points is to the original
curve but makes different aspects of the curve discrete, such
as height versus width or the number of crosses, allowing
the evolutionary computation to proceed as it originally is
planned to but have more specific goals to optimize for.

7.1.5 Experiment #2: Obstacle Course
An additional feature of the walker simulation that would

be fun to play around with is to introduce different types of
terrains to optimize for. For example a terrain with inclines
and declines might evolve walkers with more asymmetric
gaits. A terrain will many small obstacles may evolve walk-
ers with higher step heights. Some sample terrain types are
shown in Figure 13.

8. PROJECT CONTRIBUTIONS
Amanda designed and developed the novel, web-based

software infrastructure using the appropriate Javascript li-
braries, created the infrastructure for and ran the simula-
tions with regards to the obstacle course in Experiment #2,
and started on the physical construction of linkages. Joy fo-
cused on the curve-fitting experiment, developing the fitness



Figure 13: Three possible obstacle courses for walking as-
sessment, flat (A), incline/decline (B), and small obstacles
(C).

function through many iterations and ran the evaluations
with the different parameters for Experiment #1.

9. REFERENCES
[1] T. Abbott and E. Demaine. Generalizations of

kempeâĂŹs universality theorem. Masters Thesis,
2008.

[2] J. Cabrera, F. Nadal, J. Munoz, and A. Simon.
Multiobjective constrained optimal synthesis of planar
mechanisms using a new evolutionary algorithm.
Mechanism and machine theory, 42(7):791–806, 2007.

[3] S. Coros, B. Thomaszewski, G. Noris, S. Sueda,
M. Forberg, R. W. Sumner, W. Matusik, and
B. Bickel. Computational design of mechanical
characters. ACM Transactions on Graphics (TOG),
32(4):83, 2013.

[4] L. N. De Castro. Fundamentals of natural computing:
basic concepts, algorithms, and applications. CRC
Press, 2006.

[5] A. E. Eiben and J. E. Smith. Introduction to
evolutionary computing. Springer Science & Business
Media, 2003.

[6] T. Jansen. Strandbeests. Architectural Design,
78(4):22–27, 2008.

[7] D. Jordan and M. Steiner. Configuration spaces of
mechanical linkages. Discrete & Computational
Geometry, 22(2):297–315, 1999.

[8] H. C. King. Planar linkages and algebraic sets.
Turkish J. Math, 23(1):33–56, 1999.

[9] H. Lipson and J. Pollack. Automatic design and
fabrication of robotic lifeforms. Nature, 406:974–978,
2000.

[10] D. Shiffman, S. Fry, and Z. Marsh. The nature of code.
D. Shiffman, 2012.

[11] K. Sims. Evolving virtual creatures. SIGGRAPH,
1:15–22, 1994.

[12] B. Thomaszewski, S. Coros, D. Gauge, V. Megaro,
E. Grinspun, and M. Gross. Computational design of
linkage-based characters. ACM Transactions on
Graphics (TOG), 33(4):64, 2014.


	Introduction
	Motivation
	Approach
	Contributions

	Related Work
	Methods
	Software
	Evolutionary Computation Setup
	Representation
	Variation
	Selection

	Experimental Validation

	Experiment #1: Curve Fitting
	Study Setup
	Fitness Function
	Results
	Target Curves
	Mutation Rates
	Population Sizes
	Maximum Length of Change

	Discussion

	Experiment #2: Obstacle Course
	Study Setup
	Fitness Function
	Results
	Hill-climbing
	Genetic algorithm

	Discussion

	Fabrication
	Conclusion
	Future Work
	Linkage Topology
	Optimization Strategies
	Design Workflow
	Experiment #1: Curve Fitting
	Experiment #2: Obstacle Course


	Project Contributions
	References

