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Generic filtering

Generic filtering and prediction density. Assume initial f (α0|F0). Run
t = 1, 2, ...,T , for HMM:

f (αt+1|Ft) =

∫
f (αt+1|αt ,Ft)dF (αt |Ft) ,

f (Yt+1|Ft) =

∫
f (Yt+1|αt+1,Ft)dF (αt+1|Ft)

f (αt+1|Ft+1) ∝ f (Yt+1|αt+1,Ft)f (αt+1|Ft) .

Modern subject starts with Gordon et al. (1993).

This is called “particle filtering” or “sequential Monte Carlo”.
Introduction focusing on economics e.g. include Creal (2012). Also
Doucet and Johansen (2011).

I will talk about the most basic version.

Large resources at
http://www.stats.ox.ac.uk/~doucet/smc resources.html
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Particle filter

Assume θ is known, like the Kalman and discrete filters.

Like the Kalman filter, we progress by looping through time.

Big idea: replace distributions with samples. Similar to a bootstrap.
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Bootstrap particle filter

Particle filter: Run forward, t = 1, 2, ...,T , initialized with sample{(
α
(j)
0|0

)
, j = 1, ...,M

}
.

Propergate K copies, that is R = KM times,

α
(Mk+j)
t|t−1

L
= αt |α(j)

t−1|t−1,Ft−1, j = 1, 2, ...,M, k = 0, ...,K − 1.

Compute:

weights w
(j)
t = f (Yt |α(j)

t|t−1,Ft−1), j = 1, 2, ...,R.

normalized weights: w̃
(j)
t = w

(j)
t /

∑R
i=1 w

(i)
t .

Resample (i.e. multinomial) M times from{
w̃

(j)
t , α

(j)
t|t−1, j = 1, 2, ...,R

}
to produce the sample{

α
(j)
t|t , j = 1, 2, ...,M

}
.
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Estimating the likelihood

I usually use K = 1 in practice.

Estimated prediction distribution

f̂ (Yt |Ft−1) =
1

R

R∑
i=1

w
(i)
t , t = 1, 2, ...,T .

Then the simulation estimator of the likelihood is, for any R ∈ N>0,

Lt,R = f̂ (Y1, ...,Yt |F0) =
t∏

j=1

f̂ (Yt |Ft−1).
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Behavor of estimated likelihood

If f (αt |αt−1,Ft−1) > 0 and f (Yt |αt ,Ft−1) > 0 and

1

2

∫ ∣∣f (αt |αk ,Ft)− f (αt |α′k ,Ft)
∣∣dαt ≤ βt−k , β ∈ [0, 1) ,

uniformly over (αk , α
′
k) if t − k is large enough. Then under

multinomial resampling

Eu

(
Lt,R
Lt
|Ft

)
= 1,

while if K = 1 then

M

t
×Varu

(
Lt,R
Lt
|Ft

)
= O(1).

The asymptotic variance is computable, but I have never seen it used.

The proof of unbiasedness is difficult, it is due to Del Moral (2004). A
more accessible version appears in Pitt et al. (2012).
Remarkable result, e.g. standard importance sampling’s variance
increases exponentially in t. Gain from sequential Monte Carlo.
Estimate Lt,R is discontinuous in θ.
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Compute of prediction and filtering on the fly

Summaries of prediction and filtering samples, e.g.

ER (αt |Ft−1) =

∫
αtdFR(αt |Ft−1) =

1

R

R∑
i=1

α
(i)
t|t−1,

EM (αt |Ft) =

∫
αtdFM(αt |Ft) =

1

M

M∑
i=1

α
(i)
t|t .

Here Fn(X ) denotes the empirical distribution function of some X .

Under above assumptions then, for example,

M ×Varu (ER (αt |Ft) |Ft) = O(1),

and central limit theorems exist. Notice it does not involve t.
Likewise, e.g. for medians

medM(αt |Ft) = med
{
α
(1)
t|t , ..., α

(M)
t|t

}
.

Likewise covariances, other quantiles, etc.
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Computational aspects

Simulate through transition equation

αt |α(j)
t−1|t−1,Ft−1,

no need to compute density! Nice in some models where dynamics
have to be computed, e.g. DSGE, continuous time.

Evaluate measurement density

f (Yt |α(j)
t|t−1,Ft−1).

Typically easier to code than Kalman filter.

Computational load O(RT ). Does not depend on the dimension of
the state.
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Example: log-Gaussian Stochatsic volatility

Now analyze a stochastic volatility process:

yt = εte
αt/2, t = 1, 2, ...,T ,

αt+1 = µ+ φ (αt+1 − µ) + ηt .

Use simulated data with T = 500, µ = −0.5, φ = 0.98, σ = 0.13.

e.g. Kim et al. (1998) and Pitt and Shephard (1999).
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simSV <- function(T,mu,phi,sigma){

y = array(0, dim=c(T,1))

mAlpha = array(0, dim=c(T,1)); alpha = mu;

for (i in (1:T)){

alpha = mu + phi*(alpha-mu) + sigma*rnorm(1,0,1)

y[i] = rnorm(1,0,1)*exp(0.5*alpha)

mAlpha[i] = alpha

}

mRes = list(Y = y, logVol = exp(0.5*mAlpha))

}

T = 500; mu = -0.5; phi =0.98; sigma = 0.13;

lSV = simSV(T,mu,phi,sigma); y = lSV$Y;

M = 2000

mlogL = array(0, dim=c(T,1))

mAlpha= array(0,dim=c(T,3))

alpha = mu + rnorm(M,0.0,sigma/sqrt(1.0-(phi^2)))
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for (t in (1:T)){

alpha = mu + phi*(alpha-mu) + sigma*rnorm(M,0,1)

logw = dnorm(y[t],0.0,exp(0.5*alpha),log=TRUE)

w1 = exp(logw-max(logw))

Wstar = w1/sum(w1)

alpha = sample(alpha,M,replace=T,prob=Wstar)

mAlpha[t,] = quantile(exp(0.5*alpha),probs=c(0.0,0.5,0.9))

mlogL[t,1] = max(logw) + log(mean(w1))

}

pdf("SVfilter.pdf")

ts.plot(cbind(mAlpha,lSV$logVol),type="l",col=c(3,1,3,2),

lwd=c(0.2,2.0,0.2,2.0),main="Filtered and true vol")

legend("topleft",legend=c("10% filter","50% filter",

"90% filter","True"),col=c(3,1,3,2),lwd=c(0.2,2.0,0.2,2.0),)

dev.off()

pdf("alpha_T_measure.pdf"); hist(alpha,breaks=M); dev.off();
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Filtered and true vol
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Histogram of alpha
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particleF <- function(M,mY,mTheta){

mu = mTheta[1]; phi = mTheta[2]; sigma = mTheta[3];

T = dim(mY)[1]

mLogL = array(0,dim=c(T,1))

alpha = mu + rnorm(M,0.0,sigma/sqrt(1.0-(phi^2)))

for (t in (1:T)){

alpha = mu + phi*(alpha-mu) + sigma*rnorm(M,0,1)

logw = dnorm(y[t],0.0,exp(0.5*alpha),log=TRUE)

w1 = exp(logw-max(logw))

Wstar = w1/sum(w1)

alpha = sample(alpha,M,replace=T,prob=Wstar)

mLogL[t] = max(logw) + log(mean(w1))

}

mLogL

}

iRep=10
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jRep = 25

mlogLStore = array(0,dim=c(jRep,iRep))

mPara = array(0,dim=c(jRep,iRep))

pdf("particlelogL.pdf")

par(mfcol=c(2,3), mar=c(2,2,1.0,0.0), oma=c(1.5,2,1,1)) # make R plot 2 plots side by side

for (k in (1:3)){

for (l in (1:2)){

if (l==1) M = 100

if (l==2) M = 1000

mu = -0.5; phi =0.98; sigma = 0.13;

for (j in (1:jRep)){

if (k==1) mu = -2.0 + (j*(2.0/jRep))

if (k==2) phi = 0.999*(0.96+((0.04*j/(jRep))))

if (k==3) sigma = exp(log(0.13) - 2.0 + (j*(3.0/jRep)))

for (i in (1:iRep)){

mlogL = sum(particleF(M,y,c(mu,phi,sigma)))

mlogLStore[j,i] = mlogL
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if (k==1) mPara[j,i] = mu

if (k==2) mPara[j,i] = phi

if (k==3) mPara[j,i] = sigma

# print(c(i,mu,mlogL))

}

}

if (k==1 && l==1) plot(mPara,mlogLStore,main="logL for mu, M=100",ylab="logL",xlab="mu")

if (k==2 && l==1) plot(mPara,mlogLStore,main="logL for phi, M=100",ylab="logL",xlab="phi")

if (k==3 && l==1) plot(mPara,mlogLStore,main="logL for sigma, M=100",ylab="logL",xlab="sigma")

if (k==1 && l==2) plot(mPara,mlogLStore,main="logL for mu, M=1k",ylab="logL",xlab="mu")

if (k==2 && l==2) plot(mPara,mlogLStore,main="logL for phi, M=1k",ylab="logL",xlab="phi")

if (k==3 && l==2) plot(mPara,mlogLStore,main="logL for sigma, M=1k",ylab="logL",xlab="sigma")

}

}

dev.off()
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Drawing the estimated likelihood functions
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Simulated data, with M=100 and M=1,000. Data simulated using
T = 500, µ = −0.5, φ = 0.98, σ = 0.13.
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Why? I

Assume we have a sample from αt−1|Ft−1

α
(j)
t−1|t−1, j = 1, 2, ...,M.

Each draw is called a “particle”. Think of M as 1, 000 or 10, 000 or
much bigger.

Then recall

f (αt |Ft−1) =

∫
f (αt , αt−1|Ft−1)dαt−1

=

∫
f (αt |αt−1,Ft−1)dF (αt−1|Ft−1)

so we could (uniformly, over αt , unbiasedly) estimate f (αt |Ft−1) as

f̂ (αt |Ft−1) =
1

M

M∑
j=1

f (αt |α(j)
t−1|t−1,Ft−1). (1)

18 / 29



Why? II

If we were to sample from this, we write them as

α
(j)
t|t−1, j = 1, 2, ...,M.

Often called propergation.

Then we might sample from

f̂ (αt |Ft) ∝ f (Yt |αt ,Ft−1)f̂ (αt |Ft−1) (2)

∝ f (Yt |αt ,Ft−1)
M∑
j=1

f (αt |α(j)
t−1|t−1,Ft−1) (3)

M times to produce:

α
(j)
t|t , j = 1, 2, ...,M.

Often called learning or updating.

Completes the interation. Now loop.
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Likelihood estimation

A biproduct of this is

f (Yt |Ft−1) =

∫
f (Yt , αt |Ft−1)dαt =

∫
f (Yt |αt ,Ft−1)dF (αt |Ft−1)

which we (uniformly in Yt) unbiasedly estimate as

f̂ (Yt |Ft−1) =
1

M

M∑
j=1

f (Yt |α(j)
t|t−1,Ft−1).

The computational load of this step is O(M).
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Unsolved problems

Problem 1. How can I sample from

f̂ (αt |Ft−1) =
1

M

M∑
j=1

f (αt |α(j)
t−1|t−1,Ft−1).

This is easy!

Problem 2. How can I sample from

f̂ (αt |Ft) ∝ f (Yt |αt ,Ft−1)
M∑
j=1

f (αt |α(j)
t−1|t−1,Ft−1) (4)

Generic, e.g. MCMC.

Problem 3. Can we sample from (4) fast! Tricky.
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Problem 1: propergation

How can I sample
{
α
(j)
t|t−1, j = 1, ..,M

}
from

f̂ (αt |Ft−1) =
1

M

M∑
j=1

f (αt |α(j)
t−1|t−1,Ft−1)? (5)

Sample from a discrete mixture. Randomly select M versions of
j ∈ {1, 2, ...,M}, i1, ..., iM , then assume we can sample from

α
(j)
t|t−1

L
= αt |α

(ij )

t−1|t−1,Ft−1, j = 1, 2, ...,M.

Produces i.i.d. samples from (5).

Sounds great, very general. But dumb.

Better and easier to stratify.

Sample

α
(j)
t|t−1

L
= αt |α(j)

t−1|t−1,Ft−1, j = 1, 2, ...,M.

i.e. just propergate each particle once. Or if you want to sample
R = KM times, propergate each sample K times.
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Problem 2: updating I

The challange is to sample from

f̂ (αt |Ft) ∝ Mf (Yt |αt ,Ft−1)f̂ (αt |Ft−1) (6)

= f (Yt |αt ,Ft−1)
M∑
j=1

f (αt |α(j)
t−1|t−1,Ft−1) (7)

Can use generic methods, e.g. MCMC, Hamilton Monte Carlo etc.
But each density evaluation costs O(M). Deadend.

We assume we have a sample
{
α
(j)
t|t−1, j = 1, ...,R

}
from f̂ (αt |Ft−1).

Now you can think about the likelihood ratio of the filtering density
to the prediction density as

L(αt) =
f̂ (αt |Ft)

f̂ (αt |Ft−1)
,
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Problem 2: updating II

where

L(αt) =
f (Yt |αt ,Ft−1)

f (Yt |Ft−1)
(8)

=
f (Yt |αt ,Ft−1)∫

f (Yt |αt ,Ft−1)f̂ (αt |Ft−1)dαt

. (9)

Then the weighted population{(
L(α

(j)
t|t−1), α

(j)
t|t−1

)
, j = 1, ...,R

}
, (10)

has distribution function

1

R

R∑
j=1

L(α
(j)
t|t−1)1

(
α
(j)
t|t−1 < b

)
. (11)
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Problem 2: updating III

So, averaging over the propergation simulation

Eu

 1

R

R∑
j=1

L(α
(j)
t|t−1)1

(
α
(j)
t|t−1 < b

)
=

∫
1 (αt < b)

f̂ (αt |Ft)

f̂ (αt |Ft−1)
f̂ (αt |Ft−1)dαt

=

∫
1 (αt < b) f̂ (αt |Ft)dαt ,

so this distribution function (11) is simulation unbiased for f̂ (αt |Ft).

We can sample from it by resampling the weighted population (10).
As R →∞ we remove the noise.
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Problem 2: updating IV

Only problem is do not know L(αt) in (8). But

wj = f (Yt |α(j)
t ,Ft−1),

then
wj

1
R

∑R
i=1 wi

p→ L(α
(j)
t ).

So in practice we sample M times with probabilities proportional to

w̃j =
wj∑R
i=1 wi

,

so weighted sample is{(
w̃j , α

(j)
t|t−1

)
, j = 1, ...,R

}
.
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Problem 2: updating V

Produces {
α
(j)
t|t , j = 1, 2, ...,M

}
.

This is sometimes called the bootstrap filter. Computational cost is
O(R).
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