Econ2146: Time series Lecture 3

version 0.1

Neil Shephard

Economics \& Statistics Departments, Harvard University

November 2015

Generic filtering

Generic filtering and prediction density. Assume initial $f\left(\alpha_{0} \mid \mathcal{F}_{0}\right)$. Run $t=1,2, \ldots, T$, for HMM:

$$
\begin{aligned}
f\left(\alpha_{t+1} \mid \mathcal{F}_{t}\right) & =\int f\left(\alpha_{t+1} \mid \alpha_{t}, \mathcal{F}_{t}\right) \mathrm{d} F\left(\alpha_{t} \mid \mathcal{F}_{t}\right) \\
f\left(Y_{t+1} \mid \mathcal{F}_{t}\right) & =\int f\left(Y_{t+1} \mid \alpha_{t+1}, \mathcal{F}_{t}\right) \mathrm{d} F\left(\alpha_{t+1} \mid \mathcal{F}_{t}\right) \\
f\left(\alpha_{t+1} \mid \mathcal{F}_{t+1}\right) & \propto f\left(Y_{t+1} \mid \alpha_{t+1}, \mathcal{F}_{t}\right) f\left(\alpha_{t+1} \mid \mathcal{F}_{t}\right)
\end{aligned}
$$

- Modern subject starts with Gordon et al. (1993).
- This is called "particle filtering" or "sequential Monte Carlo".
- Introduction focusing on economics e.g. include Creal (2012). Also Doucet and Johansen (2011).
- I will talk about the most basic version.
- Large resources at http://www.stats.ox.ac.uk/~doucet/smc_resources.html

Particle filter

- Assume θ is known, like the Kalman and discrete filters.
- Like the Kalman filter, we progress by looping through time.
- Big idea: replace distributions with samples. Similar to a bootstrap.

Bootstrap particle filter

Particle filter: Run forward, $t=1,2, \ldots, T$, initialized with sample $\left\{\left(\alpha_{0 \mid 0}^{(j)}\right), j=1, \ldots, M\right\}$.

- Propergate K copies, that is $R=K M$ times,

$$
\alpha_{t \mid t-1}^{(M k+j)} \stackrel{L}{=} \alpha_{t} \mid \alpha_{t-1 \mid t-1}^{(j)}, \mathcal{F}_{t-1}, \quad j=1,2, \ldots, M, \quad k=0, \ldots, K-1
$$

- Compute:
- weights $w_{t}^{(j)}=f\left(Y_{t} \mid \alpha_{t \mid t-1}^{(j)}, \mathcal{F}_{t-1}\right), j=1,2, \ldots, R$.
- normalized weights: $\widetilde{w}_{t}^{(j)}=w_{t}^{(j)} / \sum_{i=1}^{R} w_{t}^{(i)}$.
- Resample (i.e. multinomial) M times from
$\left\{\widetilde{w}_{t}^{(j)}, \alpha_{t \mid t-1}^{(j)}, j=1,2, \ldots, R\right\}$ to produce the sample

$$
\left\{\alpha_{t \mid t}^{(j)}, j=1,2, \ldots, M\right\}
$$

Estimating the likelihood

- I usually use $K=1$ in practice.
- Estimated prediction distribution

$$
\widehat{f}\left(Y_{t} \mid \mathcal{F}_{t-1}\right)=\frac{1}{R} \sum_{i=1}^{R} w_{t}^{(i)}, \quad t=1,2, \ldots, T
$$

- Then the simulation estimator of the likelihood is, for any $R \in \mathbb{N}_{>0}$,

$$
L_{t, R}=\widehat{f}\left(Y_{1}, \ldots, Y_{t} \mid \mathcal{F}_{0}\right)=\prod_{j=1}^{t} \widehat{f}\left(Y_{t} \mid \mathcal{F}_{t-1}\right)
$$

Behavor of estimated likelihood

- If $f\left(\alpha_{t} \mid \alpha_{t-1}, \mathcal{F}_{t-1}\right)>0$ and $f\left(Y_{t} \mid \alpha_{t}, \mathcal{F}_{t-1}\right)>0$ and

$$
\frac{1}{2} \int\left|f\left(\alpha_{t} \mid \alpha_{k}, \mathcal{F}_{t}\right)-f\left(\alpha_{t} \mid \alpha_{k}^{\prime}, \mathcal{F}_{t}\right)\right| \mathrm{d} \alpha_{t} \leq \beta^{t-k}, \quad \beta \in[0,1)
$$

uniformly over $\left(\alpha_{k}, \alpha_{k}^{\prime}\right)$ if $t-k$ is large enough. Then under multinomial resampling

$$
\mathrm{E}_{u}\left(\left.\frac{L_{t, R}}{L_{t}} \right\rvert\, \mathcal{F}_{t}\right)=1
$$

while if $K=1$ then

$$
\frac{M}{t} \times \operatorname{Var}_{u}\left(\left.\frac{L_{t, R}}{L_{t}} \right\rvert\, \mathcal{F}_{t}\right)=O(1)
$$

The asymptotic variance is computable, but I have never seen it used.

- The proof of unbiasedness is difficult, it is due to Del Moral (2004). A more accessible version appears in Pitt et al. (2012).
- Remarkable result, e.g. standard importance sampling's variance increases exponentially in t. Gain from sequential Monte Carlo.
- Estimate $L_{t, R}$ is discontinuous in θ.

Compute of prediction and filtering on the fly

- Summaries of prediction and filtering samples, e.g.

$$
\begin{aligned}
\mathrm{E}_{R}\left(\alpha_{t} \mid \mathcal{F}_{t-1}\right) & =\int \alpha_{t} \mathrm{~d} F_{R}\left(\alpha_{t} \mid \mathcal{F}_{t-1}\right)=\frac{1}{R} \sum_{i=1}^{R} \alpha_{t \mid t-1}^{(i)} \\
\mathrm{E}_{M}\left(\alpha_{t} \mid \mathcal{F}_{t}\right) & =\int \alpha_{t} \mathrm{~d} F_{M}\left(\alpha_{t} \mid \mathcal{F}_{t}\right)=\frac{1}{M} \sum_{i=1}^{M} \alpha_{t \mid t}^{(i)}
\end{aligned}
$$

Here $F_{n}(X)$ denotes the empirical distribution function of some X.

- Under above assumptions then, for example,

$$
M \times \operatorname{Var}_{u}\left(\mathrm{E}_{R}\left(\alpha_{t} \mid \mathcal{F}_{t}\right) \mid \mathcal{F}_{t}\right)=O(1),
$$

and central limit theorems exist. Notice it does not involve t.

- Likewise, e.g. for medians

$$
\operatorname{med}_{M}\left(\alpha_{t} \mid \mathcal{F}_{t}\right)=\operatorname{med}\left\{\alpha_{t \mid t}^{(1)}, \ldots, \alpha_{t \mid t}^{(M)}\right\} .
$$

Likewise covariances, other quantiles, etc.

Computational aspects

- Simulate through transition equation

$$
\alpha_{t} \mid \alpha_{t-1 \mid t-1}^{(j)}, \mathcal{F}_{t-1}
$$

no need to compute density! Nice in some models where dynamics have to be computed, e.g. DSGE, continuous time.

- Evaluate measurement density

$$
f\left(Y_{t} \mid \alpha_{t \mid t-1}^{(j)}, \mathcal{F}_{t-1}\right)
$$

- Typically easier to code than Kalman filter.
- Computational load $O(R T)$. Does not depend on the dimension of the state.

Example: log-Gaussian Stochatsic volatility

- Now analyze a stochastic volatility process:

$$
\begin{aligned}
y_{t} & =\varepsilon_{t} e^{\alpha_{t} / 2}, \quad t=1,2, \ldots, T \\
\alpha_{t+1} & =\mu+\phi\left(\alpha_{t+1}-\mu\right)+\eta_{t} .
\end{aligned}
$$

Use simulated data with $T=500, \mu=-0.5, \phi=0.98, \sigma=0.13$.

- e.g. Kim et al. (1998) and Pitt and Shephard (1999).

```
simSV <- function(T,mu,phi,sigma){
    y = array(0, dim=c(T,1))
    mAlpha = array(0, dim=c(T,1)); alpha = mu;
    for (i in (1:T)){
    alpha = mu + phi*(alpha-mu) + sigma*rnorm(1,0,1)
    y[i] = rnorm(1,0,1)*exp(0.5*alpha)
    mAlpha[i] = alpha
    }
    mRes = list(Y = y, logVol = exp(0.5*mAlpha))
}
T = 500; mu = -0.5; phi =0.98; sigma = 0.13;
lSV = simSV(T,mu,phi,sigma); y = lSV$Y;
M = 2000
mlogL = array(0, dim=c(T,1))
mAlpha= array(0,dim=c(T,3))
alpha = mu + rnorm(M,0.0,sigma/sqrt(1.0-(phi^2)))
```

```
for (t in (1:T)){
    alpha = mu + phi*(alpha-mu) + sigma*rnorm(M,0,1)
    logw = dnorm(y[t],0.0, exp(0.5*alpha),log=TRUE)
    w1 = exp(logw-max(logw))
    Wstar = w1/sum(w1)
    alpha = sample(alpha,M,replace=T,prob=Wstar)
    mAlpha[t,] = quantile(exp(0.5*alpha),probs=c(0.0,0.5,0.9))
    mlogL[t,1] = max(logw) + log(mean(w1))
}
pdf("SVfilter.pdf")
ts.plot(cbind(mAlpha,lSV$logVol),type="l",col=c(3,1,3,2),
    lwd=c(0.2,2.0,0.2,2.0),main="Filtered and true vol")
legend("topleft",legend=c("10% filter","50% filter",
    "90% filter","True"),col=c(3,1,3,2),lwd=c(0.2,2.0,0.2,2.0)
dev.off()
pdf("alpha_T_measure.pdf"); hist(alpha,breaks=M); dev.off();
```

Filtered and true vol

$10 \%, 50 \%$ and 90% quantiles of $e^{\alpha_{t} / 2} \mid \mathcal{F}_{t}$.

Histogram of alpha

Histogram of samples from $e^{\alpha_{T} / 2} \mid \mathcal{F}_{T}$. Many repeat particles.

```
particleF <- function(M,mY,mTheta){
    mu = mTheta[1]; phi = mTheta[2]; sigma = mTheta[3];
    T = dim(mY)[1]
    mLogL = array(0,dim=c(T,1))
    alpha = mu + rnorm(M,0.0,sigma/sqrt(1.0-(phi^2)))
    for (t in (1:T)){
        alpha = mu + phi*(alpha-mu) + sigma*rnorm(M,0,1)
        logw = dnorm(y[t],0.0,exp(0.5*alpha),log=TRUE)
        w1 = exp(logw-max(logw))
        Wstar = w1/sum(w1)
        alpha = sample(alpha,M,replace=T,prob=Wstar)
        mLogL[t] = max(logw) + log(mean(w1))
    }
    mLogL
}
iRep=10
```

```
jRep = 25
mlogLStore = array(0,dim=c(jRep,iRep))
mPara = array(0,dim=c(jRep,iRep))
pdf("particlelogL.pdf")
par(mfcol=c(2,3), mar=c(2,2,1.0,0.0), oma=c(1.5,2,1,1)) # make
for (k in (1:3)){
for (l in (1:2)){
if (l==1) M = 100
if (l==2) M = 1000
mu = -0.5; phi =0.98; sigma = 0.13;
for (j in (1:jRep)){
if (k==1) mu = -2.0 + (j*(2.0/jRep))
if (k==2) phi = 0.999*(0.96+((0.04*j/(jRep))))
if (k==3) sigma = exp(log(0.13) - 2.0 + (j*(3.0/jRep)))
for (i in (1:iRep)){
mlogL = sum(particleF(M,y,c(mu,phi,sigma)))
mlogLStore[j,i] = mlogL
```

```
    if (k==1) mPara[j,i] = mu
    if (k==2) mPara[j,i] = phi
    if (k==3) mPara[j,i] = sigma
# print(c(i,mu,mlogL))
    }
    }
    if (k==1 && l==1) plot(mPara,mlogLStore,main="logL for mu, M=
    if (k==2 && l==1) plot(mPara,mlogLStore,main="logL for phi,
    if (k==3 && l==1) plot(mPara,mlogLStore,main="logL for sigma
    if (k==1 && l==2) plot(mPara,mlogLStore,main="logL for mu, M=
    if (k==2 && l==2) plot(mPara,mlogLStore,main="logL for phi,
    if (k==3 && l==2) plot(mPara,mlogLStore,main="logL for sigma
    }
}
dev.off()
```


Drawing the estimated likelihood functions

Simulated data, with $\mathrm{M}=100$ and $\mathrm{M}=1,000$. Data simulated using $T=500, \mu=-0.5, \phi=0.98, \sigma=0.13$.

Why? I

- Assume we have a sample from $\alpha_{t-1} \mid \mathcal{F}_{t-1}$

$$
\alpha_{t-1 \mid t-1}^{(j)}, \quad j=1,2, \ldots, M .
$$

Each draw is called a "particle". Think of M as 1,000 or 10,000 or much bigger.

- Then recall

$$
\begin{aligned}
f\left(\alpha_{t} \mid \mathcal{F}_{t-1}\right) & =\int f\left(\alpha_{t}, \alpha_{t-1} \mid \mathcal{F}_{t-1}\right) \mathrm{d} \alpha_{t-1} \\
& =\int f\left(\alpha_{t} \mid \alpha_{t-1}, \mathcal{F}_{t-1}\right) \mathrm{d} F\left(\alpha_{t-1} \mid \mathcal{F}_{t-1}\right)
\end{aligned}
$$

so we could (uniformly, over α_{t}, unbiasedly) estimate $f\left(\alpha_{t} \mid \mathcal{F}_{t-1}\right)$ as

$$
\begin{equation*}
\widehat{f}\left(\alpha_{t} \mid \mathcal{F}_{t-1}\right)=\frac{1}{M} \sum_{j=1}^{M} f\left(\alpha_{t} \mid \alpha_{t-1 \mid t-1}^{(j)}, \mathcal{F}_{t-1}\right) \tag{1}
\end{equation*}
$$

Why? II

- If we were to sample from this, we write them as

$$
\alpha_{t \mid t-1}^{(j)}, \quad j=1,2, \ldots, M .
$$

Often called propergation.

- Then we might sample from

$$
\begin{align*}
\widehat{f}\left(\alpha_{t} \mid \mathcal{F}_{t}\right) & \propto f\left(Y_{t} \mid \alpha_{t}, \mathcal{F}_{t-1}\right) \widehat{f}\left(\alpha_{t} \mid \mathcal{F}_{t-1}\right) \tag{2}\\
& \propto f\left(Y_{t} \mid \alpha_{t}, \mathcal{F}_{t-1}\right) \sum_{j=1}^{M} f\left(\alpha_{t} \mid \alpha_{t-1 \mid t-1}^{(j)}, \mathcal{F}_{t-1}\right) \tag{3}
\end{align*}
$$

M times to produce:

$$
\alpha_{t \mid t}^{(j)}, \quad j=1,2, \ldots, M .
$$

Often called learning or updating.

- Completes the interation. Now loop.

Likelihood estimation

- A biproduct of this is

$$
f\left(Y_{t} \mid \mathcal{F}_{t-1}\right)=\int f\left(Y_{t}, \alpha_{t} \mid \mathcal{F}_{t-1}\right) \mathrm{d} \alpha_{t}=\int f\left(Y_{t} \mid \alpha_{t}, \mathcal{F}_{t-1}\right) \mathrm{d} F\left(\alpha_{t} \mid \mathcal{F}_{t-1}\right)
$$

which we (uniformly in Y_{t}) unbiasedly estimate as

$$
\widehat{f}\left(Y_{t} \mid \mathcal{F}_{t-1}\right)=\frac{1}{M} \sum_{j=1}^{M} f\left(Y_{t} \mid \alpha_{t \mid t-1}^{(j)}, \mathcal{F}_{t-1}\right)
$$

- The computational load of this step is $O(M)$.

Unsolved problems

- Problem 1. How can I sample from

$$
\widehat{f}\left(\alpha_{t} \mid \mathcal{F}_{t-1}\right)=\frac{1}{M} \sum_{j=1}^{M} f\left(\alpha_{t} \mid \alpha_{t-1 \mid t-1}^{(j)}, \mathcal{F}_{t-1}\right)
$$

This is easy!

- Problem 2. How can I sample from

$$
\begin{equation*}
\widehat{f}\left(\alpha_{t} \mid \mathcal{F}_{t}\right) \propto f\left(Y_{t} \mid \alpha_{t}, \mathcal{F}_{t-1}\right) \sum_{j=1}^{M} f\left(\alpha_{t} \mid \alpha_{t-1 \mid t-1}^{(j)}, \mathcal{F}_{t-1}\right) \tag{4}
\end{equation*}
$$

Generic, e.g. MCMC.

- Problem 3. Can we sample from (4) fast! Tricky.

Problem 1: propergation

- How can I sample $\left\{\alpha_{t \mid t-1}^{(j)}, j=1, . ., M\right\}$ from

$$
\begin{equation*}
\widehat{f}\left(\alpha_{t} \mid \mathcal{F}_{t-1}\right)=\frac{1}{M} \sum_{j=1}^{M} f\left(\alpha_{t} \mid \alpha_{t-1 \mid t-1}^{(j)}, \mathcal{F}_{t-1}\right) ? \tag{5}
\end{equation*}
$$

- Sample from a discrete mixture. Randomly select M versions of $j \in\{1,2, \ldots, M\}, i_{1}, \ldots, i_{M}$, then assume we can sample from

$$
\alpha_{t \mid t-1}^{(j)} \stackrel{L}{=} \alpha_{t} \mid \alpha_{t-1 \mid t-1}^{\left(i_{j}\right)}, \mathcal{F}_{t-1}, \quad j=1,2, \ldots, M .
$$

- Produces i.i.d. samples from (5).
- Sounds great, very general. But dumb.
- Better and easier to stratify.
- Sample

$$
\alpha_{t \mid t-1}^{(j)} \stackrel{\iota}{=} \alpha_{t} \mid \alpha_{t-1 \mid t-1}^{(j)}, \mathcal{F}_{t-1}, \quad j=1,2, \ldots, M .
$$

i.e. just propergate each particle once. Or if you want to sample $R=K M$ times, propergate each sample K times.

Problem 2: updating I

- The challange is to sample from

$$
\begin{align*}
\widehat{f}\left(\alpha_{t} \mid \mathcal{F}_{t}\right) & \propto \operatorname{Mf}\left(Y_{t} \mid \alpha_{t}, \mathcal{F}_{t-1}\right) \widehat{f}\left(\alpha_{t} \mid \mathcal{F}_{t-1}\right) \tag{6}\\
& =f\left(Y_{t} \mid \alpha_{t}, \mathcal{F}_{t-1}\right) \sum_{j=1}^{M} f\left(\alpha_{t} \mid \alpha_{t-1 \mid t-1}^{(j)}, \mathcal{F}_{t-1}\right) \tag{7}
\end{align*}
$$

Can use generic methods, e.g. MCMC, Hamilton Monte Carlo etc. But each density evaluation costs $O(M)$. Deadend.

- We assume we have a sample $\left\{\alpha_{t \mid t-1}^{(j)}, j=1, \ldots, R\right\}$ from $\widehat{f}\left(\alpha_{t} \mid \mathcal{F}_{t-1}\right)$. Now you can think about the likelihood ratio of the filtering density to the prediction density as

$$
L\left(\alpha_{t}\right)=\frac{\widehat{f}\left(\alpha_{t} \mid \mathcal{F}_{t}\right)}{\widehat{f}\left(\alpha_{t} \mid \mathcal{F}_{t-1}\right)}
$$

Problem 2: updating II

where

$$
\begin{align*}
L\left(\alpha_{t}\right) & =\frac{f\left(Y_{t} \mid \alpha_{t}, \mathcal{F}_{t-1}\right)}{f\left(Y_{t} \mid \mathcal{F}_{t-1}\right)} \tag{8}\\
& =\frac{f\left(Y_{t} \mid \alpha_{t}, \mathcal{F}_{t-1}\right)}{\int f\left(Y_{t} \mid \alpha_{t}, \mathcal{F}_{t-1}\right) \widehat{f}\left(\alpha_{t} \mid \mathcal{F}_{t-1}\right) \mathrm{d} \alpha_{t}} \tag{9}
\end{align*}
$$

- Then the weighted population

$$
\begin{equation*}
\left\{\left(L\left(\alpha_{t \mid t-1}^{(j)}\right), \alpha_{t \mid t-1}^{(j)}\right), j=1, \ldots, R\right\} \tag{10}
\end{equation*}
$$

has distribution function

$$
\begin{equation*}
\frac{1}{R} \sum_{j=1}^{R} L\left(\alpha_{t \mid t-1}^{(j)}\right) 1\left(\alpha_{t \mid t-1}^{(j)}<b\right) \tag{11}
\end{equation*}
$$

Problem 2: updating III

So, averaging over the propergation simulation

$$
\begin{aligned}
& \mathrm{E}_{u}\left\{\frac{1}{R} \sum_{j=1}^{R} L\left(\alpha_{t \mid t-1}^{(j)}\right) 1\left(\alpha_{t \mid t-1}^{(j)}<b\right)\right\} \\
= & \int 1\left(\alpha_{t}<b\right) \frac{\widehat{f}\left(\alpha_{t} \mid \mathcal{F}_{t}\right)}{\widehat{f}\left(\alpha_{t} \mid \mathcal{F}_{t-1}\right)} \widehat{f}\left(\alpha_{t} \mid \mathcal{F}_{t-1}\right) \mathrm{d} \alpha_{t} \\
= & \int 1\left(\alpha_{t}<b\right) \widehat{f}\left(\alpha_{t} \mid \mathcal{F}_{t}\right) \mathrm{d} \alpha_{t},
\end{aligned}
$$

so this distribution function (11) is simulation unbiased for $\widehat{f}\left(\alpha_{t} \mid \mathcal{F}_{t}\right)$.

- We can sample from it by resampling the weighted population (10).
- As $R \rightarrow \infty$ we remove the noise.

Problem 2: updating IV

- Only problem is do not know $L\left(\alpha_{t}\right)$ in (8). But

$$
w_{j}=f\left(Y_{t} \mid \alpha_{t}^{(j)}, \mathcal{F}_{t-1}\right)
$$

then

$$
\frac{w_{j}}{\frac{1}{R} \sum_{i=1}^{R} w_{i}} \xrightarrow{p} L\left(\alpha_{t}^{(j)}\right)
$$

So in practice we sample M times with probabilities proportional to

$$
\widetilde{w}_{j}=\frac{w_{j}}{\sum_{i=1}^{R} w_{i}}
$$

so weighted sample is

$$
\left\{\left(\widetilde{w}_{j}, \alpha_{t \mid t-1}^{(j)}\right), j=1, \ldots, R\right\}
$$

Problem 2: updating V

- Produces

$$
\left\{\alpha_{t \mid t}^{(j)}, j=1,2, \ldots, M\right\}
$$

- This is sometimes called the bootstrap filter. Computational cost is $O(R)$.

References I

Creal, D. (2012). A survey of sequential Monte Carlo methods for economics and finance. Econometric Reviews 31, 245-296.
Del Moral, P. (2004). Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. New York: Springer.
Doucet, A. and A. Johansen (2011). A tutorial on particle filtering and smoothing: fifteen years later. In D. Crisan and B. Rozovsky (Eds.), The Oxford Handbook of Nonlinear filtering. Oxford University Press.
Gordon, N. J., D. J. Salmond, and A. F. M. Smith (1993). A novel approach to nonlinear and non-Gaussian Bayesian state estimation. IEE-Proceedings F 140, 107-113.
Kim, S., N. Shephard, and S. Chib (1998). Stochastic volatility: likelihood inference and comparison with ARCH models. Review of Economic Studies 65, 361-393.

References II

Pitt, M. K. and N. Shephard (1999). Filtering via simulation: auxiliary particle filter. Journal of the American Statistical Association 94, 590-599.

Pitt, M. K., R. Silva, P. Giordani, and R. Kohn (2012). On some properties of Markov chain Monte Carlo simulation methods based on the particle filter. Journal of Econometrics 171, 134-151.

