
MCB 131: Problem Set 2

Due: Monday, 6 March 2017 2:30PM

Problem 1. Infomax for natural images
• In class we have derived the Infomax cost function,

E = −
∑
k

{
1

2
ln[xk(ck + 1) + 1]− 1

2
ln[xk + 1]− 1

2
ρ[xk(ck + 1) + 1− σ2]

}
(1)

where the sum is over all M Fourier wave vectors k. (Note that k is a 2D vector and for simplicity of
notations, we use k instead of ~k, similarly for r below.) As we did in the class, we will mainly work
with the scaled parameters as defined below.

(i) ck is the scaled power spectrum of natural images, Ck/ε, where ε is the input noise variance,

(ii) xk is |wk|2 where wk is the Fourier transform of the (scaled) localized receptive field, w(r) (the
unscaled version is w(r)/

√
ε), and

(iii) the output noise variance is kept fixed at 1. σ2 > 1 is the value of the total output variance (for
the unscaled variables) divided by M and ρ is the corresponding Lagrange multiplier for constraining
this total output.

– A. By evaluating ∂E/∂xk = 0 derive the following solution for xk

xk =
1

2(ck + 1)

[
−(ck + 2) +

√
(ck + 2)2 + 4

(
ck
ρ
− ck − 1

)]

– B. Use the above equation to show that (e.g. by Taylor expansion) in the low noise limit, ε→ 0,
i.e., ck →∞,

xk ≈
1

ck

[
1

ρ
− 1

]
> 0 (2)

while in the high noise limit ε→∞, i.e., ck → 0,

xk ≈
[√

ck
ρ
− 1

]
. (3)

Hint: In deriving these limits, you have to be mindful of how ρ behaves in those limits. It can be
shown that in the low noise limit ρ remains of order 1, while in the high noise limit, ρ ∝ 1/ε, so
that ck/ρ = O(1) .

– C. Evaluate |wk| vs. k for natural images and different levels of noise.

Details: Assume the signal is arranged in a square lattice with unit distance between nearest
neighbors. (Choose the linear size L = 101 or something of this order). For ck = Ck/ε the
following form can be used,

Ck =
1

(k2 + k2min)
0.9 (4)

Note that we have added a “low frequency cut-off”, kmin = 2π/L, to prevent Ck from diverging
at k = 0 .
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(i) Recall that |wk| = (xk)
1/2 and use the expression derived in question A to evaluate |wk| vs.

|k| for the following noise levels: ε = [0.01, 1, 20 : 40 : 380]. You can plot for k = (kx, 0), for
simplicity, or better by making a 2D surface plot. Use the values of ρ given in the mat file
Rho_vs_ep.mat (or text file Rho_vs_ep.txt) which gives the values of ρ for the relevant
values of ε.

(ii) Plot the (scaled) receptive field w(r) in real space for low and high noise, for example:
ε = 0.01 and ε = 100 by Inverse Fourier Transform of wk (assume the phases are zero). You can
plot 2D surfaces or for one dimensional cross section e.g., r = (rx, 0).

(iii) The provided ρ values are calculated at σ2 = 4. Check that your solution indeed obeys (up
to some reasonable precision) the total output variance constraint. [Hint: can you think of a
shortcut to derive the equation of this varaince constraint using Eq.(1) ?]

Problem 2.
Consider an image whose pixels form a one dimensional lattice of points with periodic boundary conditions.
The intensities of the pixels are given by the vector x = (x1, x2, . . . , xN )T with zero mean and covariance
matrix with the following structure: Cij =1 for all i = j. All off-diagonal elements of C are zero except for
|i− j| = 1 (where |i− j| is mod N) in which case Cij = a, a < 0.5.

• (a) Using the fact that C as defined above is a circulant matrix, give an analytical expression for all
the eigenvalues and eigenvectors of the matrix C. What is the degeneracy of the eigenvalues (i.e., how
many of them are equal to each other)?

• (b) Plot the eigenvalues as a function of the Fourier number k, for N = 100 and several positive and
negative values of a.

• (c) Verify your results by diagonalizing the matrix numerically with the Matlab command eig.

• (d) Explain why a is restricted to be smaller than 0.5.

Problem 3.

Given an ensemble of two-dimensional input vectors r = (x, y) that take on values distributed uniformly
inside the above parallelogram, inputing feedforward network of two linear output neurons with weight
vectors W 1 and W 2, respectively:

• (a) Find the principal components for the distribution, PC1 and PC2. How much variance is accounted
for by each PC? Note: First, shift the parallelogram so that it is centered around the mean vector, so
that the new r has zero mean.
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• (b) Write the general form of W 1 and W 2 that whiten the input. (Hint: Note that the general form
can be written as WPCAU where WPCA denotes what we called in class the PCA solution and U

is a rotation matrix
(
cos θ − sin θ
sin θ cos θ

)
denoting a counterclockwise rotation by θ.) Draw a couple of

examples of the resultant vectors W 1 and W 2. Directly compute the covariance of the output neurons
for all the solutions and show its white.

• (c) Statistical Dependence: Prove that in general, the output neurons, y1and y2 are statistically
dependent by showing that in general, given the value of y1, impose some restriction on the range of
values that y2 can have. Suggest a high order correlation that will capture this dependency. However,
there is one value of θ for which knowing y1 does not tell you anything about y2. Determine the value
of θ and the associated two vectors W 1 and W 2. By Drawing them you should find geometrically
what is special about this pair of filters. [It might be amusing and helpful to write down a simple
script that generates the pairs W 1and W 2 from randomly generated points uniformly distributed in
the parallelogram].

Problem 4. Independent component analysis and blind source sepa-
ration
Section A: Skewness and kurtosis of a mixed random variable

Consider a single random variable

x =
1√
N

N∑
i=1

ai si

where si are i.i.d. (independent, identically distributed) random sources. We denote the lowest order
moments of si by:

µ1 = 〈si〉 = 0, µ2 = 〈s2i 〉, µ3 = 〈s3i 〉, µ4 = 〈s4i 〉

Assume throughout Section A that all components of the weight vector, ai, are equal to +1 or −1.

a) Compute the mean, variance, skewness, and kurtosis of x.

b) How do these quantities depend on N and on the particular choice of a? Explain the significance of
your results for ICA.

Reminder: The skewness and kurtosis of the random variable x are defined as γ = 〈x3〉
〈x2〉3/2 and k = 〈x4〉

〈x2〉2−3,
respectively.

Section B: Numerical demixing algorithm
In this exercise you will implement a numerical method for blind source separation by maximizing kurtosis.

Download “mixed_images.mat” from the course website. This matfile contains three images that were
generated by linearly mixing three (unknown) source images. You will find the three source images using
an ICA algorithm. For Section B, please turn in your Matlab code and plots of the requested figures.
Instructions:

1. Load the .mat file in Matlab and plot the mixed images (use the “gray” colormap). Examine the pixel
statistics of each image (mean, variance, skewness and kurtosis).

2. Frame the problem as an ICA problem. The input vectors are 3-D, consisting of the three image
intensity values corresponding to a pixel location. You have to find a 3 × 3 matrix W such that
u =Wx will give the corresponding intensity values of the three source images.

3. As a first step - spherize (i.e, subtract the mean and whiten) x.
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4. A simple algorithm for finding the demixing matrixW is to sequentially find each of the three (normal-
ized) demixing vectors (w1,w2,w3) that comprise W. Choose some initial value for the first 3-D filter
vector, w1. Update w1 by adding it to a term proportional to the gradient of the kurtosis of w1 · x
and then normalize w1. After repeated iteration, this should converge to one of the source images,
which should have greater kurtosis than any of the mixed images. Plot the source image. Plot the
kurtosis as a function of the iteration number.

5. Repeat this procedure to findw2 by maximizing the kurtosis in the space perpendicular tow1. You can
achieve this by first updating w2 with the gradient of the kurtosis and then subtracting the component
lying in the direction of w1. This should converge to the second source image. Plot the second source
image. Plot the kurtosis as a function of the iteration number.

6. Finally, obtain w3 by maximizing the kurtosis and subtracting out the projection on the 2-D space
spanned by w1 and w2. Plot the third source image. Plot the kurtosis as a function of the iteration
number.

EXTRA CREDIT:
You may submit at most one of the following problems to be graded as extra credit.

1 Compressible Signals
Consider a rank ordered signal x ∈ RN (xi ≥ xi+1 ∀i).

• Show that the vector xK ,

(xK)i =

{
xi i ≤ K
0 i > K

is the K−sparse vector with the minimal L2 distance from x. (i.e xK = argminy∈K−sparse ‖y − x‖2) .
xK is the best K−sparse approximate of x .

• One of the basic results of CS theory is that the error of L1reconstruction of any signal is bounded by

||x̂− x||2 ≤ C1
||x− xK ||1√

K
(5)

where x̂is the reconstructed signal and C1 is some positive K independent constant.

• Consider the case where for some constant R: ∀i, |xi| ≤ R
ip , with p ≥ 1.

Show that in the limit N,K � 1 , K
N ∼ O (1), and p ≥ 1, the following relation holds

‖x− xK‖1√
K

' C ‖x− xK‖2 ,

where C is some O (1) constant.

• Show that the above relation does not hold if p < 1.

• Discuss why signals with p ≥ 1 are called compressible signals.
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2 IRLS Algorithm and Compressed Sensing Simulations
The IRLS algorithm[1] minimizes the L1 norm of a vector subject to linear equality constraint by iteratively
solving weighted least square optimization problems. i.e. solving

min
x

N∑
i=1

ω
(n)
i x2i s.t. Ax = y

with the weights of the n iteration given by ω(n)
i = 1∣∣∣x(n−1)

i

∣∣∣ were x(n−1)i are the solution of the optimization

problem in the previous iteration. By writing the Lagrangian of the optimization problem and minimizing
it, one finds that

the solution in each iteration is given by

x(n) = Q−1(n)A
T
(
AQ−1(n)A

T
)−1

y

with Q(n) = diag
(
ω(n)

)
.

.
In this question you will find by simulation the minimal number of measurements required to reconstruct

a sparse signal by using L1 minimization.
Consider a K−sparse signal, s, of size N with K non zero element drawn randomly by first choosing the

non zero elements uniformly and then drawing the value of the non zero elements from a standard normal
distribution.

We will try and reconstruct the signal from M measurements given by

y = As

with the matrix AM×N a random Gaussian matrix with an appropriate choice of mean and variance[1], using
the IRLS algorithm .

• Download the file IRLS.m from the course website. The file contains a MATLAB code that implements
the IRLS algorithm for a given matrix A and a given measurement vector y.

• For a given sparsity f = K
N calculate the probability for a perfect reconstruction of the signal as a

function of the fraction of measurements α = M
N . How does the result depend on N? (Use f = 0.15

and N = 100, 250, 500)

• Measure αc, the critical value of α above which perfect reconstruction is guaranteed with high proba-
bility for large N , as a function of the sparsity f . Compare your results to Figure 3 in the CS review
by Ganguli and Sompolinsky [2].

Recommended reading for extra credit (available on the course web-
site)

1. Statistical mechanics of compressed sensing. S. Ganguli and H. Sompolinsky, Phys. Rev. Lett. (2010)
104:188701.

2. Iteratively reweighted algorithms for compressive sensing. R. Chartrand, and W. Yin, IEEE (ICASSP).
(2008) pp 3869–3872.
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