Homework 1

Math 55a, Fall 2018
Due Wednesday, September 12, 2018

Note: the first three problems are warm-up problems on set theory; if you don't know how to do them, ask us!

1. Prove the pigeon-hole principle: if A is a finite set, then any injective map $f: A \rightarrow A$ is also surjective.
2. Let $\mathbb{N}=\{0,1,2, \ldots\}$ denote the set of natural numbers. Give an explicit bijection between \mathbb{N} and $\mathbb{N} \times \mathbb{N}$.
3. Let F denote the set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$, and let $\mathcal{C} \subset F$ denote the subset of all continuous functions. Prove that $|\mathbb{R}|=|\mathcal{C}|<|F|$.
4. Let $x_{1}, x_{2}, \ldots, x_{n} \in G$ be any elements of a group G. Show that

$$
\left(x_{1} x_{2} \cdots x_{n}\right)^{-1}=x_{n}^{-1} \cdot x_{n-1}^{-1} \cdots x_{2}^{-1} \cdot x_{1}^{-1} .
$$

5. Show that a group G cannot be the union of two proper subgroups.
6. Show that any finite group G of even order contains an element $x \in G$ such that $a \neq e$ but $a^{2}=e$.
7. Let D_{8} be the group of symmetries of a square (including reflections). How many subgroups (including the trivial subgroups D_{8} and $\{e\}$) does D_{8} have?
8. Let G be a group, and consider the set map $\phi: G \rightarrow G$ sending each element $a \in G$ to its square $a^{2} \in G$. Show that ϕ is a homomorphism if and only if G is abelian.
9. Let $H \subset G$ be any subgroup of a finite group G. Show that if $|G| /|H|=2$ then H is a normal subgroup of G.
10. What is the order of the group $G L_{2}(\mathbb{Z} / 3)$ of 2×2 matrices with entries in $\mathbb{Z} / 3$ and nonzero determinant?
11. Let G be a group.
(a) Show that the set of automorphisms of G is itself a group (with group law given by composition). This group is denoted $\operatorname{Aut}(G)$.
(b) For each element $a \in G$, define a map $c_{a}: G \rightarrow G$ by $c_{a}(x)=a x a^{-1}$. Show that c_{a} is an automorphism of G.
(c) Show that the map $\phi: G \rightarrow \operatorname{Aut}(G)$ defined by sending $a \in G$ to $c_{a} \in \operatorname{Aut}(G)$ is a homomorphism.
(d) Give an example of a group G such that ϕ is an isomorphism.

Supplementary problems: Artin, Chapter 2, problems M6 and M7

