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III-4: Mass renormalization

1 Introduction

In this lecture we will study the following 1-loop Feynman diagram:

�

known as the electron self-energy graph. You may recall we encountered this diagram way
back in Lecture I-4 in the context of Oppenheimer’s Lamb shift calculation using old-fashioned
perturbation theory. Indeed, this graph is important for the Lamb shift. However, rather than
compute the Lamb shift (which is rather tedious and mostly of historical interest for us), we will
use this graph to segue to a more general understanding of renormalization. You may also recall
Oppenheimer’s frustrated comment, quoted at the end of Lecture I-4, where he suggested that
the resolution of these infinities would require an “adequate theory of the masses of the electron
and proton”. In this lecture, we will provide such an adequate theory.

The electron self-energy graph corrects the electron propagator in the same way that the
photon self-energy graph corrects the photon propagator. Recall from Lecture III-2 that the
photon-self energy graph could be interpreted as a vacuum polarization effect which generated a
logarithmic weakening of the Coulomb potential at large distances. Thus by measuring
r1V (r1) − r2V (r2) with two different values of r one could measure vacuum polarization and
compare it to the theoretical prediction. In particular, we were able to renormalize the divergent
vacuum polarization graph by relating it to something (the potential) which can be directly con-
nected to observables (e.g. the force between two currents or the energy levels of Hydrogen).

Proceeding in the same way, the electron self-energy graph would correct the effect generated
by the exchange of an electron. However, since the electron is a fermion, and charged, this
exchange cannot be interpreted as generating a potential in any useful way. Thus it is not clear
what exactly one would measure to test whatever result we find by evaluating the self-energy
diagram.

Thus, for the self-energy graph, and many other divergent graphs we will evaluate, it is
helpful to navigate away from observables like the Lamb shift or the Coulomb potential which
are particular to one type of correction, to thinking of general observables. Unfortunately the
question of what is observable and what is not is extremely subtle and has no precise definition
in quantum field theory. For example, one might imagine that S-matrix elements are observable;
in many cases they are actually infinite due to infrared divergences, as we will see in Lecture III-
6. Luckily, one does not need a precise definition of an observable to understand renormaliza-
tion, since even non-observable quantities can be renormalized. We will therefore consider the
renormalization of general time-ordered correlation functions or Green’s functions

G(x1,
 , xn)= 〈Ω|T {φ1(x1)
 φn(xn)}|Ω〉 (1)

where φi can be any type of field (scalars, electrons, photons, etc.). These Green’s functions are
in general not observable. In fact, they are in general not even gauge invariant. We will never-
theless show within a few lectures that all ultraviolet divergences can be removed from all
Green’s functions in any local quantum field theory through a systematic process of renormal-
ization. Once the Green’s functions are UV finite, S-matrix elements constructed from them
using the LSZ reduction formula will also be UV finite. Infrared divergences and what can actu-
ally be observed is another matter.
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One advantage of renormalizing general Green’s functions rather than S-matrix elements is
that the Green’s functions can appear as internal sub-graphs in many different S-matrix calcula-
tions. In particular, we will find that in QED while there are an infinite number of divergent
graphs contributing to the S-matrix, the divergences can be efficiently categorized and renormal-
ized through the one-particle irreducible sub-graphs (defined as graphs which cannot be cut
in two by cutting a single propagator). As we will see, these one-particle irreducible graphs com-
pose the minimal basis of Green’s functions out of which any S-matrix can be built. Organizing
the discussion in terms of Green’s functions and one-particle irreducible diagrams will vastly
simplify the proof of renormalizability in QED (in Lecture III-7) and is critical to a general
understanding of how renormalization works in various quantum field theories.

In this lecture, we abbreviate 〈Ω|T {φ1(x1)
 φn(xn)}|Ω〉 with 〈
 〉 for simplicity.

2 Vacuum expectation values

We begin our consideration of the renormalization of general Green’s functions by considering
the simplest Green’s functions, the one-point functions:

〈φ(x)〉, 〈ψ(x)〉, 〈Aµ(x)〉,
 (2)

These give the expectation value of fields in the vacuum, also known as vacuum expectation
values.

At tree-level, the vacuum expectation value of a field is the lowest energy configuration
which satisfies the classical equations of motion. All Lagrangians we have considered so far
begin at quadratic order in the fields, so that ψ = A = φ = 0 are solutions to the equations of
motion. Other solutions, such as plane waves in the free theory, contribute to the gradient terms
in the energy density and thus have higher energy than the constant solution. Thus, ψ = A =
φ = 0 is the minimum energy solution and all the expectation values in Eq. (2) vanish at tree-
level. More directly, we can see that 〈φ〉 = 〈ψ〉 = 〈Aµ〉 = 0 at tree-level in the canonically quan-
tized theory, since each quantum field has creation and annihilation operators which vanish in
the vacuum.

At 1-loop, vacuum expectation values, for example for 〈Aµ〉 could come from diagrams like

�

(3)

This is called a tadpole diagram. It and all higher-loop contributions to 〈Aµ〉 vanish identically
in QED. This is easy to see in perturbation theory since all fermion loops with an odd number
of photons attached involve a trace over an odd number of γ matrices, which vanishes. It is also
true that 〈ψ〉=0 to all orders in QED, simply because one cannot draw any diagrams.

A somewhat simpler proof that 〈Aµ〉 or 〈ψ〉 must vanish is that nonzero values would violate
Lorentz invariance, and Lorentz invariance is a symmetry of the QED Lagrangian. However, it
may sometimes happen that the vacuum does not in fact satisfy every symmetry of the
Lagrangian, in which case we say spontaneous symmetry breaking has occurred. Sponta-
neous symmetry breaking is covered in depth in Lecture IV-4. A familiar example is the sponta-
neous breaking of rotational invariance by a ferromagnet when cooled below its Curie tempera-
ture. At low temperature, the magnet has a preferred spin direction which could equally well
have pointed anywhere, but must point somewhere. Another example is the ground state of our
universe which has a preferred frame, the rest frame of the cosmic microwave background. In
both cases space-time symmetries are symmetries of the Lagrangian but not of the ground state.

Spontaneous symmetry breaking can also apply to internal symmetries, such as global or
gauge symmetries of a theory. For example, in the Bardeen-Cooper-Schrieffer (BCS) theory of
superconductivity the U(1) symmetry of QED is spontaneously broken in type II superconduc-
tors as they are cooled below their critical temperature. The attractive force between electrons
due to phonon exchange becomes stronger than the repulsive Coulomb force and the vacuum
becomes charged. Another important example is the Glashow-Weinberg-Salam (GWS) theory of
weak interactions (Lecture IV-5). This theory embeds the low-energy theory of weak interac-
tions into a larger theory which has an exact SU(2) symmetry which acts on the left-handed
quarks and leptons.
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Spontaneous symmetry breaking is an immensely important topic in quantum field theory,
which we will systematically discuss beginning in Lecture IV-4, including more details of the
above examples. Now, it is merely a distraction from our current task of understanding renor-
malization. Since 〈Aµ〉 = 〈ψ〉 = 0 in QED to all orders in perturbation theory, there is nothing
to renormalize and we can move on to two-point functions.

3 Electron self-energy

There are a number of two-point functions in QED. In Lecture II-2, we discussed the renormal-
ization of the photon propagator which corresponds to 〈AµAν〉. Two-point functions like 〈ψAµ〉
vanish identically in QED since there are simply no diagrams which could contribute to it. That

leaves the fermion two-point function 〈ψψ̄ 〉.
As with the photon, it is helpful to study 〈ψψ̄ 〉 in momentum space. We define the

momentum space Green’s function by

〈ψ(x)ψ̄ (y)〉=
∫

d4p

(2π)4
e−ip (x−y)iG(p) (4)

This is possible since the left-hand side can only depend on x− y by translation invariance.

At tree level, G(p) is just the momentum space fermion propagator

iG0(p)≡ i

p−m
(5)

At 1-loop it gets a correction due to the self-energy graph

iG2(p) =

�

p

p− k

k p

=iG0(p)[iΣ2(p)]iG0(p)

where, in Feynman gauge,

iΣ2(p) = (−ie)2
∫

d4k

(2π)4
γµ i(k+m)

k2−m2+ iε
γµ −i

(p− k)2+ iε
(6)

If this graph were contributing to an S-matrix element, rather than just a Green’s function, we
would remove the propagators from the external lines (the G0 factors in Eq. (5)) and contract
with external on-shell spinors. This iΣ2(p) is what we would get from the normal Feynman rules
without the external spinors.

Before evaluating this graph, we can observe an interesting feature that was not present in
the photon case (the vacuum polarization graph). Including the self-energy graph, the effective

electron propagator to 1-loop is

iG(p) =

�

+

�

p

p− k

k p

=
i

p−m
+

i

p−m
iΣ2(p)

i

p−m
+O(e4) (7)

In an S-matrix element, this correction might appear on an external leg, like

�

(8)
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In that case G(p) is contracted with an on-shell external spinor and the result multiplied by a

factor of p−m from the LSZ reduction formula. Now, there is no reason to expect that Σ2(m) =

0 (and in fact it is not), so even after removing a single pole with p − m we see from Eq. (7)

that there will still be a pole left over. That is, the S-matrix will be singular. This problem did
not come up for the photon propagator and vacuum polarization, where the corrected photon
propagator had only a single pole to all orders in perturbation theory. The resolution of this
apparently singular S-matrix for electron scattering is that the electron mass appearing in the
LSZ formula does not necessarily have to match the electron mass appearing in the Lagrangian.
In the photon case, they were equal since both were zero. Once we evaluate the self-energy
graph, we will then discuss how the electron mass is renormalized and why the S-matrix remains
finite.

3.1 Self-energy loop graph

Evaluating the self-energy graph with Feynman parameters (see Appendix B) gives

iΣ2(p)=(−ie)2
∫

d4k

(2π)4
γµ i(k+m)

k2−m2+ iε
γµ −i

(k− p)2+ iε

=e2
∫

d4k

(2π)4

∫

0

1

dx
2k− 4m

[(k2−m2)(1− x)+ (p− k)2x+ iε]2

Now we complete the square in the denominator and shift k→ k+ px to give

iΣ2(p) = 2e2
∫

0

1

dx

∫

d4k

(2π)4
xp−2m

[k2−∆+ iε]2
(9)

where ∆= (1− x)(m2− p2x) and we have dropped the term linear in k in the numerator since it

is odd under k → −k and its integral therefore vanishes. This integrand scales like
d4k

k4
and is

therefore logarithmically divergent in the UV.
To regulate the UV divergence, we have to choose a regularization scheme. For pedagogical

purposes we will evaluate this loop with both Pauli-Villars (PV) and dimensional regularization
(DR). Recall (from Appendix B) that Pauli-Villars introduces heavy particles, of mass Λ with
negative energy for each physical particle in the theory. Pauli-Villars is nice because the scale Λ
is clearly a UV deformation, with the Pauli-Villars ghosts having no effect on the low energy
theory as Λ → ∞. In dimensional regularization, which analytically continues to 4 − ε dimen-
sions, it is not clear that ε is a UV deformation in any sense. Dimensional regularization is
much easier to use for more complicated theories than QED, so eventually we will use it exclu-
sively. For now, it is helpful to use two regulators to see that results are regulator independent.

With a PV photon, the self-energy graph becomes

Σ2(p) =−2ie2
∫

0

1

dx(xp− 2m)

∫

d4k

(2π)4

[

1

(k2−∆)2
− 1

(k2−∆′)2

]

(10)

with ∆′ = (1 − x)(m2 − p2x) + xΛ2. Since we take Λ → ∞ we can more simply take ∆′ = xΛ2.
The regulated integral is now convergent and can be evaluated using formulas from Appendix B.
The result is

Σ2(p) =− α

2π

∫

0

1

dx(2m− xp)ln
xΛ2

(1−x)(m2− p2x)

=−α
π

(

m lnΛ2− 1

4
p lnΛ2+ finite

) (PV) (11)

In dimensional regularization, the loop is

Σ2(p) =−2ie2µ4−d

∫

0

1

dx(xp− 2m)

∫

ddk

(2π)d
1

(k2−∆+ iε)2

=− α

2π

∫

0

1

dx(2m− xp)

[

2

ε
+ ln

µ̃2

(1− x)(m2− p2x)

] (DR) (12)
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where µ̃2≡ 4πe−γEµ2. Extracting the divergent parts, the loop can be written as

Σ2(p)=
α

π

(

p− 4m

2ε
+ finite

)

(13)

Note that in both cases Σ2(m) � 0, so there will be a double-pole at 1-loop with the possibly
dangerous consequences discussed below Eq. (7). Note that both results have divergences pro-
portional to both m and to p. This implies that we need two quantities to renormalize, to
remove both divergences.

3.2 Renormalization

As discussed in the introduction, we want the Green’s function G(p) defined in Eq. (4) to be

finite. Thus the infinities from the O(e2) contribution to this Green’s function must be removed
through renormalization.

As with the vacuum polarization, we need to figure out what parameters in the theory can
be renormalized to cancel the infinities in the self-energy graph. To begin, let us write the
Lagrangian as

L=−1

4
Fµν

2 + iψ̄ ∂ψ−m0ψ̄ψ− e0ψ̄ Aψ (14)

In the study of vacuum polarization in Lecture II-2, we concluded that the charge in the
Lagrangian, now written as e0, called the bare charge, could be used to absorb an infinity.
Recall that we defined a renormalized electric charge via

e0
2= eR

2 + eR
4 Π2(p0

2)+
 = eR
2

(

1− eR
2

12π2
ln

Λ2

−p02
+


)

(15)

where Π2(p0
2) is formally infinite. Since e0 has already been renormalized by vacuum polariza-

tion, we cannot renormalize it in a different way for the self-energy graph.

To make G(p) finite the obvious Lagrangian parameter which might absorb the infinity is the

bare electron mass m0. Indeed, from Eq. (7),

iG2(p) =
i

p−m0
+

i

p−m0
[iΣ2(p)]

i

p−m0
(16)

we can see that an (infinite) redefinition of m0 = m + ∆m with ∆m of order e2 could compen-

sate for an infinity at order e2 in Σ2(p). Unfortunately, we saw in Eqs. (11) and (13) that Σ2(p)

has two types of infinities, one independent of p and the other proportional to p. The mass

renormalization can only remove one of these infinities. Thus, to progress further we need some-
thing else to renormalize. But what could it be? Our Lagrangian only had two parameters, m
and e, and we’ve already defined how e gets renormalized.

In fact, there is another parameter: the normalization of the fermion wavefunction. Let us
write the fermion field in terms of creation and annihilation operators that we have been using
all along as the bare free field:

ψ0(x)=
∑

s

∫

d3p

(2π)3
1

2ωp

√ (ap
sup

se−ipx+ bp
s †vp

seipx) (17)

The bare free field is canonically normalized to give all the tree-level scattering results we have
already calculated. We then define the renormalized field as

ψR(x)=
1

Z2

√
∑

s

∫

d3p

(2π)3
1

2ωp

√ (ap
sup

se−ipx+ bp
s †vp

seipx)≡ 1

Z2

√ ψ0 (18)

for some (formally infinite) number Z2. This is the origin of the term renormalization. We index
bare (infinite) fields and parameters with a 0 and physical finite renormalized fields and parame-
ters with an R.
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For the tree-level theory, Z2 = 1 is required to be consistent with the normalization used in
all our scattering formulae. So it is natural to account for radiative corrections by writing

Z2=1+ δ2 (19)

where δ2 is the counterterm, which has a formal Taylor series expansion in e starting at order
e2. We also write

m0=ZmmR (20)

and expand Zm=1+ δm, with δm the mass counterterm.1 Then

m0=mR+mRδm (21)

As we will see, particularly when we cover renormalized perturbation theory in Lecture III-6,
using counterterms rather than bare and renormalized quantities directly will be extremely effi-
cient.

All the calculations we have done so far have been with fields with the conventional (bare)
normalization. However, it is the Green’s function of renormalized fields which should have
finite physical values. So we define

〈ψ0(x)ψ̄ 0(y)〉= i

∫

d4p

(2π)4
e−ip (x−y)Gbare(p) (22)

and

〈ψR(x)ψ̄ R(y)〉= i

∫

d4p

(2π)4
e−ip (x−y)GR(p) (23)

and expect GR(p) to be finite. By definition

GR(p)=
1

Z2
Gbare(p) (24)

Now since Z2 is just a number, the tree-level propagator for the renormalized fields can be
expressed in terms of the propagator of the bare fields as

iGR(p) =
1

Z2

i

p−m0
+ loops

=

(

1

1+ δ2

)

(

i

p−mR− δmmR

)

+ loops

=
i

p−mR
+

i

p−mR
[i(δ2p− (δ2+ δm)mR)]

i

p−mR
+ loops+O(e4)

(25)

Adding the 1-loop contribution as in Eqs. (7) or (16) gives

iGR(p)=
i

p−mR
+

i

p−mR
[i(δ2p− (δ2+ δm)mR+Σ2(p))]

i

p−mR
+O(e4) (26)

So now we can choose δ2 and δm to remove all the infinities in the electron self-energy.
To be explicit, from Eq. (11) we see that choosing

δ2=− α

4π
lnΛ2, δm=−3α

4π
lnΛ2 (PV) (27)

for Pauli-Villars or

δ2=− α

4π

2

ε
, δm=−3α

4π

2

ε
(DR) (28)

for dimensional regularization will remove the infinities. With these choices, we will get finite
answers for the two point function GR(p) at any scale p.

We can choose different values for the counterterms which differ from these by finite numbers
and GR(p) will still be finite. Any prescription for choosing the finite parts of the counterterms

is known as a subtraction scheme. Not only must observables in a renormalized theory be
finite, but they also must be independent of the subtraction scheme, as we will see. Neverthe-
less, there are some smart choices for subtraction schemes and some not-so-smart choices.

1. Another common convention is Z2m0 ≡ mR + δm. Our convention is more commonly used in modern field
theory calculations.
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The two subtraction schemes most often used in quantum field theory are the on-shell sub-
traction scheme and the minimal subtraction (MS) scheme. Minimal subtraction is by far the
simplest scheme and the one used in almost all modern quantum field theory calculations. In
minimal subtraction the counterterms are defined to have no finite parts at all, so that δ2 and
δm are given by Eqs. (27) and (28). More commonly, a slightly modified version of this prescrip-
tion known as modified minimal subtraction (MS) is used, in which ln (4π) and γE finite parts
in dimensionally regulated results are also subtracted off. MS just turns µ̃ back into µ in dimen-
sionally regularized amplitudes.

In on-shell subtraction the renormalized mass mR appearing in Green’s functions is identified
with the observed electron mass mP which can be defined to all orders as the position of the
pole in the S-matrix.2 To see how this identification works in practice, it is helpful to look at the
possible form of the higher order corrections.

4 The pole mass

So far, we have only included one particular self-energy correction. The 2-point function G(p) in

fact gets corrections from an infinite number of graphs. One particular series of corrections, of
the form

iGbare(p)=

�

+

�

+

�

+
 (29)

just produces a geometric series

iGbare(p)=
i

p−m0
+

i

p−m0

(

iΣ2(p)
)

i

p−m0
+

i

p−m0

(

iΣ2(p)
)

i

p−m0

(

iΣ2(p)
)

i

p−m0
+


(30)

which is easy to sum. More generally, any possible graph contributing to this Green’s function is
part of some geometric series. Conversely, the entire Green’s function can be written as the sum
of a single geometric series constructed by sewing together graphs which cannot be cut in two by
slicing a single propagator. We call such graphs one-particle irreducible (1PI). For example,

�

is 1PI but

�

is not (31)

Thus

iG (p)=

�

+

�

1PI +

�

1PI 1PI +


Defining iΣ(p) as the sum of all of the 1PI graphs, we find

iG(p) =
i

p−m
+

i

p−m

(

iΣ(p)
)

i

p−m
+

i

p−m

(

iΣ(p)
)

i

p−m

(

iΣ(p)
)

i

p−m
+

=
i

p−m

(

1+
−Σ(p)

p−m
+

(

−Σ(p)

p−m

)

2

+


)

=
i

p−m

1

1+
Σ(p)

p−m

=
i

p−m+Σ(p)

(32)

2. Actually, there isn’t an isolated pole in the S-matrix associated with the electron. Rather, the electron
mass is the beginning of a cut in the complex plane. This will be discussed more in Lecture III-10.
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This is just a general expression for a sum of Feynman diagrams, applying whether m = m0

or m = mR. For the bare Green’s function, there was just a single 1PI diagram at order e2 and
so Σ(p)=Σ2(p)+O(e4). Then we have

iGbare(p)=
i

p−m0+Σ2(p) +

(33)

This expression is the sum of the series in Eq. (29).
From the bare Green’s function we can compute the renormalized Green’s function as

iGR(p) =
1

1+ δ2
iGbare(p)=

(

1

1+ δ2

)

i

p−m0+Σ2(p)+

=

i

p−m0+ δ2p−m0δ2+Σ2(p)+


where the 
 are formally O(e4) or higher. Then using Eq.(21), m0=mR+mRδm, this becomes

iGR(p) =
i

p−mR+ δ2p− (δ2+ δm)mR+Σ2(p)+

(34)

We will write this more conveniently as

iGR(p)=
i

p−mR+ΣR(p)
(35)

with ΣR(p)=Σ2(p)+ δ2p− (δm+ δ2)mR+O(e4).

You may have noted that this result would follow easily from Eq. (26) if we could treat the
counterterms as contributions to 1P1 graphs. To justify such treatment, all we have to do is
rewrite the bare free Lagrangian in terms of renormalized fields

L= iψ̄ 0∂ψ0−m0ψ̄
0ψ0= i Z2ψ̄

R∂ψR−Z2ZmmRψ̄
RψR (36)

using Eqs. (19) and (20) this becomes

L= i ψ̄ R∂ψR−mRψ̄ RψR+ iδ2ψ̄
R∂ψR−mR(δ2+ δm)ψ̄

RψR (37)

Thus we can treat the counterterms, which start at order e2, as interactions whose Feynman
rules give contributions δ2p and −(δ2 + δm)mR to the 1PI graphs. Then Eq. (35) follows from

the general form Eq. (32) with m = mR and Σ = ΣR. Expanding the Lagrangian in terms of
renormalized quantities leads to so-called renormalized perturbation theory. Renormalized
perturbation theory will be discussed more completely, including interactions and the photon
field, in the next lecture.

4.1 On-shell subtraction
Having summed all of the 1PI diagrams into the renormalized propagator, we can now identify
the physical electron mass mP as the location of its pole. More precisely, the renormalized prop-
agator should have a single pole at p = mP with residue i. The location of the pole is a defini-

tion of mass, known as the pole mass. It is important to keep in mind that the pole mass is
physical and independent of any subtraction scheme used to set the finite parts of the countert-
erms. In the on-shell subtraction scheme, the finite parts of the counterterms are chosen so that
mR = mP . In minimal subtraction, mR � mP . In either case the 2-point Green’s function still
has a pole at mP .

From Eq. (35), for GR(p) to have a pole at p=mP the 1PI graphs must satisfy

ΣR(mP) =mR−mP (38)

Having residue i implies

i= lim
p→mP

(p−mP)
i

p−mR+ΣR(p)
= lim

p→mP

i

1+
d

dp
ΣR(p)

(39)

where we have used L’Hôpital’s rule. This implies

d

dp
ΣR(p)

∣

∣

∣

∣

∣

p=mP

=0 (40)
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These conditions define the pole mass, independent of subtraction scheme.
In the on-shell subtraction scheme, the renormalized mass mR is set equal to the pole

mass mP . Then, recalling ΣR(p) = Σ2(p) + δ2p − (δm + δ2)mR + 
 , these conditions imply to
order e2

δ2=− d

dp
Σ2(p)

∣

∣

∣

∣

∣

p=mP

(41)

and

δmmP =Σ2(mP) (42)

which we can now evaluate in our different regulators.
With Pauli-Villars, Eq. (12) implies

Σ2(mP)=− α

2π
mP

(

3

2
ln

Λ2

mP
2
+

3

4

)

(PV) (43)

which is one of our conditions. Unfortunately, when we try to evaluate the derivative, we find

d

dp
Σ(p)

∣

∣

∣

∣

∣

p=mP

=
α

2π

(

1

2
ln

Λ2

mP
2 +

5

4
−
∫

0

1

dx
2x(2− x)

1−x

)

(PV)

This last integral is divergent. This divergence is an infrared divergence, due to the integra-
tion region near k2 = 0. In this case, the divergence does not come from the loop integral itself,
but from our choice of subtraction scheme which involved Σ′(mP). Nevertheless, infrared diver-
gences in renormalized Green’s functions and S-matrix elements are unavoidable. We will see
how they drop out of physical observables in Lecture III-6.

For now, a quick way to sequester the infrared divergence is to pretend that the photon has a
tiny mass mγ. As with ultraviolet divergences, infrared divergences will cancel in physical pro-
cesses, so we will eventually be able to take mγ → 0. If you are skeptical about how this could
happen, recall that in the vacuum polarization calculation at momentum transfers −p2 ≫ m2,
the corrections to the Coulomb potential were independent of m. In fact, the vacuum polariza-
tion graph would be infrared divergent if we set m = 0 before evaluating the loop. Thus at very
short distances, the electron mass acts only as a regulator, just as mγ does here.

The effect of a photon mass is to change ∆ to ∆=(1− x)(mP
2 − p2x) +xmγ

2 so that

Σ2(p)=
α

2π

∫

0

1

dx(xp− 2mP)ln
xΛ2

(1−x)(mP
2 − p2x) +xmγ

2
(PV) (44)

Then, keeping only the leading terms in mγ

δ2=−Σ′(mP)=
α

2π

(

−1

2
ln

Λ2

mP
2 − 9

4
− ln

mγ
2

mP
2

)

(PV)

which is now finite. Then

δm=
1

mP
Σ2(mP) =

α

2π

(

−3

2
ln

Λ2

mP
2 − 3

4

)

(PV) (45)

In dimensional regularization, with the photon mass added, the loop gives

Σ2(p)=
α

2π

∫

0

1

dx(xp− 2m)

(

2

ε
+ ln

µ̃2

(1− x)(mP
2 − p2x)+ xmγ

2

)

(DR) (46)

leading to

δ2=−Σ2
′ (mP) =− α

2π

(

1

ε
+

1

2
ln
µ̃2

mP
2 +

5

2
+ ln

mγ
2

mP
2

)

(DR) (47)

and

δm=
1

mP
Σ2(mP )=

α

2π

(

−3

ε
− 3

2
ln
µ̃2

mP
2
− 5

2

)

(DR) (48)
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4.2 Amputation

Recall that the LSZ theorem converts Green’s functions to S-matrix elements by adding
external polarizations and factors of p − m0 to project on to physical one-particle states. How-

ever, we have now seen that the location of the pole in the electron propagator is not the value
of the mass m0 appearing in the Lagrangian, but rather at some other location mP . Moreover,
we have found that only Green’s functions of renormalized fields like GR ∼ 〈ψ̄ RψR〉 should be
finite. Thus it would be natural to modify the LSZ theorem to

〈f |S |i〉 ∼ (pf −mP )
 (pi−mP)〈ψR

 ψR〉 (49)

This is almost correct.

The subtlety is that in the derivation of LSZ, we had to assume that all the interactions hap-
pened during some finite time interval and that as t→±∞ we could treat the theory as free. In
the free theory, the pole would be at m0. Thus we really want the theory not to be entirely free
at asymptotic times, but to include all of the corrections which move the pole from m0 to mP .
Those corrections are precisely the series of 1PI insertions onto the electron propagator. Thus in
projecting onto the pole mass, with the (p−mP) factors, we must assume that all of the correc-

tions to the on-shell external electron propagator have been included. For example, diagrams
like

�

(50)

would only contribute to correcting the external electron propagator, which would then be
removed by LSZ.

Thus the LSZ theorem in renormalized perturbation theory is

〈f |S |i〉=(pf −mP)
 (pi−mP)〈ψR

 ψR〉amputated (51)

where amputated means chop off the external lines until they begin interacting with the other
fields. Only amputated diagrams contribute to S-matrix elements.

Note that amputating diagrams does not mean that self-energy graphs are never important.
When a self-energy bubble occurs on an internal line, like in this correction to Compton scat-
tering

� (52)

it will have an important physical effect. All the renormalized LSZ theorem says is that you
should not correct external lines for S-matrix elements since those corrections are already
accounted for in the updated definition of asymptotic states.

5 Minimal subtraction

In minimal subtraction, the counterterms are fixed with no reference to the pole mass. The pre-
scription is simply that the counterterms should have no finite parts. Thus, with Pauli-Villars,
we get Eq. (27)

δ2=− α

4π
lnΛ2, δm=−3α

4π
lnΛ2 (PV) (53)

and then ΣR(p)=Σ2(p)+ δ2p− (δm+ δ2)mR is

ΣR(p) =
α

2π

∫

0

1

dx(xp− 2mR)ln
x

(1−x)(mR
2 − p2x)

(54)
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which is finite, but has nonsensical dimensions. Instead, we can modify the minimal subtraction
for use with Pauli-Villars so that

δ2=− α

4π
ln
Λ2

µ2
, δm=−3α

4π
ln

Λ2

µ2
(PV) (55)

with µ some arbitrary scale with dimensions of mass. µ should be thought of as a low energy
scale, say 1 GeV, which is not taken to infinity. Then,

ΣR(p) =
α

2π

∫

0

1

dx(xp− 2mR)ln
xµ2

(1−x)(mR
2 − p2x)

(56)

By introducing µ we have established a one-parameter family of subtraction schemes. Any phys-
ical observable must be independent of µ, but µ is not taken to infinity. µ is sometimes called
the subtraction point.

The subtraction point already appeared in Lecture III-2 on vacuum polarization, where it
was set equal to the long distance scale where the renormalized electric charge eR was defined.
As in that case, when one compares observables, such as combinations of the Coulomb potential
r1V (r1)− r2V (r2) measured at different scales, the subtraction point will drop out.

The subtraction point also appears as the parameter µ in dimensional regularization. Recall

that in dimensional regularization µ is introduced by the rescaling e2 → µ4−de2 which lets the
electric charge remain dimensionless in d dimensions. In dimensional regularization, minimal
subtraction gives Eq. (28)

δ2=− α

4π

2

ε
, δm=−3α

4π

2

ε
(DR,MS) (57)

In dimensional regularization, minimal subtraction is almost always upgraded to modified min-
imal subtraction (MS), where the ln (4π) and γE factors are also removed. Expanding µ̃2 in Eq.
(12)

Σ2(p)=
α

2π

∫

0

1

dx(xp− 2mR)

[

2

ε
+ ln

4πe−γEµ2

(1− x)(mR
2 − p2x)

]

(58)

=
α

2π

[

1

2
p

(

2

ε
+ ln (4πe−γE)

)

− 2mR

(

2

ε
+ ln (4πe−γE)

)

+ finite

]

(59)

So in MS

δ2=− α

4π

(

2

ε
+ ln (4πe−γE)

)

, δm=−3α

4π

(

2

ε
+ ln (4πe−γE)

)

(DR,MS) (60)

and then

ΣR(p)=
α

2π

∫

0

1

dx(xp− 2mR)

[

ln
µ2

(1− x)(mR
2 − p2x)

]

(61)

which is UV finite and has µ in it not µ̃. As with Pauli-Villars, there is a 1-parameter family of
renormalized 1PI corrections. In both cases, the subtraction point µ is an arbitrary scale which
is not taken to infinity but will drop out of physical calculations.

The value of mR is finite in MS and known as the MS mass. The renormalized electron
propagator will in general not have a pole at p = mR. There is still a pole at p = mP with

residue i, but mP � mR. Recalling the renormalized electron propagator from Eq. (35)

iGR(p)=
i

p−mR+ΣR(p)
(62)

we can now easily relate the pole mass and the MS mass. Requiring a pole in this propagator at
p=mP gives

mP −mR+ΣR (mP) = 0 (63)

Using mP =mR at leading order, we then have

mR=mP +ΣR(mP)=mP

[

1− α

4π

(

5+ 3ln
µ2

mP
2

)

+O(α2)

]

(DR) (64)
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In particular, the MS mass depends on the arbitrary scale µ.

While your first instinct might be that this extra parameter µ in minimal subtraction adds
an unnecessary complication, it is actually extremely useful. The fact that physical observables
are independent of µ gives a powerful constraint. Indeed, demanding

d

dµ
O = 0 where O is some

observable is the renormalization group equation, to be discussed in Lecture III-9.

6 Summary and Discussion

In this lecture we saw that the electron self-energy graph contributes loop corrections to the
electron propagator. This loop was divergent, but the divergence could be removed by renormal-

izing the electron’s quantum field ψ0= Z2

√
ψR and redefining the electron mass m0=ZmmR. In

these equations, ψ0 and m0 refer to bare quantities which are formally infinite, while ψR and
mR are finite renormalized quantities. The quantities δm and δ2 defined by expanding the renor-
malization factors around the classical values, e.g. Z2 = 1 + δ2, are known as counterterms .
These counterterms can be chosen to cancel the infinite contribution of the electron self-energy
graph to the renormalized electron propagator. While the cancellation fixes the infinite parts of
the counterterms, the finite parts are arbitrary. Conventions for fixing the finite parts are known
as subtraction schemes .

We saw that the general geometric series of loops correcting the propagator can be summed
to all orders in α leading to a renormalized propagator of the form

iGR(p)=
i

p−mR+ΣR(p)
(65)

Here ΣR(p) represents one-particle irreducible Feynman diagrams plus counterterm contribu-

tions. Up to order e2, we found ΣR(p) = Σ2(p) + δ2p − (δm + δ2)mR. This renormalized propa-

gator should have a pole at the physical electron mass, the pole mass, with residue i

iGR(p)=
i

p−mP
+ terms regular at p=mP (66)

In terms of the bare propagator, Gbare(p)=Z2G
R(p), we can write

iGbare(p)=
iZ2

p−mP
+ terms regular at p=mP (67)

Sometimes people use this to interpret Z2 as the residue of the pole. However, since both Z2 and
the bare propagator are formally infinite, this interpretation must be made with care.

Two subtraction schemes were discussed. The first, the on-shell scheme, was defined by iden-
tifying the location of the pole of the propagator, mP , with the renormalized mass mR ≡ mP .
This, along with a constraint on the residue of the pole, generated two equations

ΣR(mP) = 0,
d

dp
ΣR(p)

∣

∣

∣

∣

∣

p=mP

=0 (68)

These equations, which apply to all orders in perturbation theory, fix the counterterms δ2 and
δm. They are known as the on-shell renormalization conditions.

The second scheme, known as minimal subtraction, simply sets the finite parts of δ2 and δm
to zero. Modified minimal subtraction also subtracts off ln (4π) and γE factors which effectively
replaces µ̃ by µ in dimensionally regulated amplitudes. In minimal subtraction, the renormal-
ized mass (written as mR or often just m) is known as the MS mass . It is in general different
from the pole mass. At 1-loop, we found

mR=mP +ΣR(mP )=mP

[

1− α

4π

(

5+ 3ln
µ2

mP
2

)]

(69)
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This expression depends on an arbitrary scale µ known as the subtraction point which is not
taken to ∞. While the extra parameter µ may seem superfluous, we will see in Lecture III-9
that physical observables being independent of µ leads to an important constraint, the renor-
malization group equations. Even without using the renormalization group, µ-independence
order-by-order in perturbation theory gives an important check that an observable has been cal-
culated correctly. We will provide a number of examples in the next two lectures.

You might wonder why on earth anyone would use an unphysical and arbitrary MS mass
rather than the physical pole mass. The basic answer is that MS is a much simpler subtraction
scheme than the on-shell scheme. It is often easier to compute loops in MS and then convert the
masses back to the pole mass at the end rather than to do the computations in terms of the pole
mass from the beginning. Numerically, the differences between pole masses and MS are often
quite small for µ chosen of order mP . One important exception is the top quark mass, where
mP ∼ 175 GeV but mR ∼ 163 GeV. This 5% difference is important for precision physics, to be
discussed in Lecture IV-5. A more sophisticated answer is that the MS mass has an appealing
property that it is free of ambiguities related to non-perturbative effects in quantum chromody-
namics (so-called renormalon ambiguities). Indeed for particles like quarks, which can never be
seen as asymptotic states, there is not actually a pole in the S-matrix, so the pole mass is not
always a useful mass definition.

It is important to keep in mind that the physical electron mass mP is the location of the pole
in the electron propagator whether or not we identified this mass with mR. In the on-shell
scheme, we cannot ask about radiative corrections to the electron mass mP since by definition,
it does not receive any. In minimal subtraction, the electron mass mR does get radiative correc-
tions, as Eq. (69) shows. A physical effect of these radiative corrections can be seen, in prin-
ciple, in logarithmic corrections to the Yukawa potential, which is easiest to understand using
renormalization group methods (cf. Lecture III-10).

It is not always easy to determine what scheme experimental mass measurements correspond
to. For example, the top mass has been measured at the Tevatron and the Large Hadron Col-
lider by fitting a line shape to the output of a particular Monte Carlo event generator called
Pythia. Thus one can say the top mass is measured in the Pythia scheme. Although the
Pythia scheme is close to the on-shell scheme, for a precision top mass measurement it is neces-
sary to have a systematic way to convert between the two.

Finally, we discussed that for S-matrix elements, the LSZ reduction theorem should be mod-
ified to

〈f |S |i〉=(pf −mP)
 (pi−mP)〈ψR

 ψR〉amputated (70)

where amputated refers to not including diagrams with 1PI corrections to external legs. This
was necessary because those corrections are already included in what we call external states,
with poles at mP .

Despite the amputation of corrections to external legs, there are physical implications of the
electron self-energy when the graph corrects internal lines. Historically, the most important such
correction was the Lamb shift (the splitting between the 2S1/2 and 2P1/2 levels of the Hydrogen
atom). Radiative corrections to the electron propagator were what Oppenheimer was missing
when he calculated this shift in Old-Fashioned Perturbation Theory in 1932. Hans Bethe’s
famous estimate

∆E(2S1/2) =m
4Z4α5

3πn3
ln
m

E0
∼ 1000MHz (71)

for the Lamb shift from 1947 came from cutting off the infrared divergence in the self-energy
graph at the energy E0 of the Hydrogen atom ground state. The self-energy graph was one of
the ingredients Feynman, Schwinger and Tomonaga needed to produce the correct, infrared- and
ultraviolet-finite Lamb shift in 1949. More generally, the self-energy graph contributes in some
way to almost every precision process that has been calculated in QED.
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